
Metabolomics
Metabolite Profiling and Small Molecule Mass Spectrometry
The Metabolomics Service and Research Facility provides services for the quantitative analysis of small molecules and metabolites.
Biological research in the post-genomic era has become largely dependent on advanced technologies and high-end instrumentation, allowing large-scale analysis of biological systems and processes. The most recent approach in -omics technologies, metabolomics, aims for a comprehensive and quantitative picture of small biomolecules in biological samples. The analysis of metabolomes allows the direct read-out of molecular phenotypes, representing the nexus of interactions between the genome and the environment. The beauty of the approach is that the metabolome directly represents the biochemical condition of cells, tissues, and organisms, thus allowing insights into perturbed biochemical pathways.
Our LC-MS/MS platforms provide both targeted and nontargeted metabolomics analysis of biological samples, revealing changes in metabolic pathways, consequences of various perturbations or simply quantifying small molecules of any origin. The facility has established methods for more than 1000 metabolites and additionally offers methods development on demand.
We offer:
- Targeted metabolomics.
- Stable isotope tracer analysis.
- Global (nontargeted) metabolite profiling.
- Small molecule analysis: identification & quantification.
We thank the Vienna Business Agency - a service offered by the city of Vienna for generous funding of the implementation of this Core Facility. To learn more about our research, please check our publications.
SERVICES

The facility has a growing portfolio of LC-MS/MS methods for almost 1000 small molecules spanning over a wide variety of metabolites from different substance classes such as amino acids, bile acids, carboxylic acids (e.g. citric acid, stearic acid), coenzymes (NAD+/H, Acetyl-CoA/CoA, etc.), ketone bodies, lipids, mono amines (dopamine etc.), nucleoside tri-, di-, mono-phosphates, coenzymes (NAD+/H, Acetyl-CoA/CoA, etc.). We also offer methods development for small molecule analysis on demand.

We offer the analysis of panels consisting of metabolites of biochemical pathways such as the TCA cycle, glycolysis, purine and pyrimidine metabolism, urea cycle, amino acid metabolism or the pentose phosphate pathway but also tailor-made panels.
Additionally, we offer methods development on demand and more sophisticated assays such as stable isotope tracer analysis (e.g. 13C, 15N). In addition to relative quantification, the absolute quantification of metabolites is also offered.
Non-targeted LC-MS/MS or metabolite profiling
The facility offers global metabolite profiling employing liquid chromatography on-line coupled to high-resolution tandem mass spectrometry. Each sample is measured twice, with two different separation techniques hydrophilic interaction liquid chromatography (HILIC) and reversed phase chromatography, maximizing coverage of the metabolome.
The technique provides a hypothesis-free description of metabolic differences between samples caused by different genotypes or any perturbations of the system, usually detecting more than 1,000 distinct small molecules. Many of them will be identified with high confidence by our steadily growing in-house library containing more than 500 compounds. Another subset of the detected compounds will be identified by searching public databases.
EQUIPMENT
We currently operate two HPLC-coupled TSQ Altis (Thermo Fisher Scientific). The TSQ Altis is a state-of-the-art triple quadrupole mass spectrometer, optimal for the targeted analysis of small molecules. Metabolites are separated on a bioinert Vanquish (Thermo Fisher Scientific) HPLC system, on-line coupled via electrospray ionization to the mass spectrometer.
USER INFORMATION
Welcome to the Metabolomics Research and Service Facility at the VBCF. We look forward to providing you with small molecule analysis and data interpretation.
To get started, please contact Thomas Köcher to discuss your project and the analytical question you have, especially if you want to start a new project.
We support your research by providing high-end analysis and data interpretation of your samples:
- Upon request, we will support you in the experimental design of your study.
- We will send you the respective extraction protocols.
- In addition to our established protocols, we offer methods development on demand.
- We provide both targeted and nontargeted analysis of your samples.
- After analysis, we will send you a report of the obtained results.
- We offer to assist you in writing technical parts in grant applications.
Please label samples properly and send a sample information sheet via Email along with the samples.
Samples can be submitted as extracts, preferentially shipped on dry ice.
Shipping Address:
Thomas Köcher
Metabolomics Facility
Vienna BioCenter Core Facilities GmbH
Dr. Bohr-Gasse 3
1030 Vienna
Austria
The Metabolomics Core Facility offers access to its services to all users from both academia and companies on a “first come, first served"-basis, but prioritizes users from the participating institutes of the “shared research facility metabolomics”.
In addition, the VBCF General Cooperation Conditions apply.
For further questions, please contact Thomas Köcher.
As per our usage policy, if the facility services were used in a publication, the facility must be acknowledged. The following statement must be added to the acknowledgment:
"LC-MS/MS analysis was performed by the Metabolomics Facility at Vienna BioCenter Core Facilities (VBCF), member of the Vienna BioCenter (VBC), Austria and funded by the Austrian Federal Ministry of Education, Science & Research and the City of Vienna.”
PUBLICATIONS
Reduced coenzyme Q synthesis confers non-target site resistance to the herbicide thaxtomin A. Casey C, Köcher T, Champion C, Jandrasits K, Mosiolek M, Bonnot C, et al. (2023) PLoS Genet 19(1): e1010423.
Role of Omega-6 Fatty Acid Metabolism in Cardiac Surgery Postoperative Bleeding Risk. Velho TR, Ferreira R, Willmann K, Pedroso D, Paixão T, Pereira RM, Junqueira N, Guerra NC, Brito D, Almeida AG, Nobre Â, Köcher T, Pinto F, Moita LF. Crit Care Explor. 2022 4(10):e0763
Sister chromatid-sensitive Hi-C to map the conformation of replicated genomes. Mitter M, Takacs Z, Köcher T, Micura R, Langer CCH, Gerlich DW. Nat Protoc. 2022 17(6):1486-1517.
Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa-Porthos axis in Drosophila. Emtenani S, Martin ET, Gyoergy A, Bicher J, Genger JW, Köcher T, Akhmanova M, Guarda M, Roblek M, Bergthaler A, Hurd TR, Rangan P, Siekhaus DE. EMBO J. 2022 41(12):e109049.
Kynurenine importation by SLC7A11 propagates anti-ferroptotic signaling. Fiore A, Zeitler L, Russier M, Groß A, Hiller MK, Parker JL, Stier L, Köcher T, Newstead S, Murray PJ. Mol Cell. 2022 82(5):920-932
Revisiting a GWAS peak in Arabidopsis thaliana reveals possible confounding by genetic heterogeneity. Sasaki E, Köcher T, Filiault DL, Nordborg M. Heredity (Edinb). 2021, Epub ahead of print.
Mucosal biofilms are an endoscopic feature of irritable bowel syndrome and ulcerative colitis. Baumgartner M, Lang M, Holley H, Crepaz D, Hausmann B, Pjevac P, Moser D, Haller F, Hof F, Beer A, Orgler E, Frick A, Khare V, Evstatiev R, Strohmaier S, Primas C, Dolak W, Köcher T, Kristaps K, Rath T, Neurath MF, Berry D, Makristathis A, Muttenthaler M, Gasche C. Gastroenterology. 2021, Epub ahead of print.
The oxidoreductase PYROXD1 uses NAD(P)+ as an antioxidant to sustain tRNA ligase activity in pre-tRNA splicing and unfolded protein response. Asanović I, Strandback E, Kroupova A, Pasajlic D, Meinhart A, Tsung-Pin P, Djokovic N, Anrather D, Schuetz T, Suskiewicz MJ, Sillamaa S, Köcher T, Beveridge R, Nikolic K, Schleiffer A, Jinek M, Hartl M, Clausen T, Penninger J, Macheroux P, Weitzer S, Martinez J. Mol Cell. 2021 Apr 23:S1097-2765(21)00312-9. doi: 10.1016/j.molcel.2021.04.007. Online ahead of print.
Tetracycline Antibiotics Induce Host-Dependent Disease Tolerance to Infection. Colaço HG, Barros A, Neves-Costa A, Seixas E, Pedroso D, Velho T, Willmann KL, Faisca P, Grabmann G, Yi HS, Shong M, Benes V, Weis S, Köcher T, Moita LF. [2021] Immunity 54(1):53-67.e7
Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. Zeitler L, Fiore A, Meyer C, Russier M, Zanella G, Suppmann S, Gargaro M, Sidhu SS, Seshagiri S, Ohnmacht C, Köcher T, Fallarino F, Linkermann A, Murray PJ. [2021] Elife 10:e64806.
Benchmarking Non-Targeted Metabolomics Using Yeast-Derived Libraries. Rampler E, Hermann G, Grabmann G, El Abiead Y, Schoeny H, Baumgartinger C, Köcher T, Koellensperger G. [2021] Metabolites 11(3):160.
Oxidative Metabolism Drives Immortalization of Neural Stem Cells during Tumorigenesis Bonnay F, Veloso A, Steinmann V, Köcher T, Abdusselamoglu MD, Bajaj S, Rivelles E, Landskron L, Esterbauer H, Zinzen RP, Knoblich JA. [2020] Cell 182 (6), 1490-1507
AIF-regulated oxidative phosphorylation supports lung cancer development. Rao S, Mondragón L, Pranjic B, Hanada T, Stoll G, Köcher T, Zhang P, Jais A, Lercher A, Bergthaler A, Schramek D, Haigh K, Sica V, Leduc M, Modjtahedi N, Pai TP, Onji M, Uribesalgo I, Hanada R, Kozieradzki I, Koglgruber R, Cronin SJ, She Z, Quehenberger F, Popper H, Kenner L, Haigh JJ, Kepp O, Rak M, Cai K, Kroemer G, Penninger JM. [2019] Cell Research 29, 579–591
SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Muhar M, Ebert A, Neumann T, Umkehrer C, Jude J, Wieshofer C, Rescheneder P, Lipp JJ, Herzog VA, Reichholf B, Cisneros DA, Hoffmann T, Schlapansky MF, Bhat P, von Haeseler A, Köcher T, Obenauf AC, Popow J, Ameres SL, Zuber J. [2018] Science 360, 800–805
RIOK1 kinase activity is required for cell survival irrespective of MTAP status. Hörmann A, Hopfgartner B, Köcher T, Corcokovic M, Krammer T, Reiser C, Bader G, Shi J, Ehrenhöfer K, Wöhrle S, Schweifer N, Vakoc CR, Kraut N, Pearson M, Petronczki M, Neumüller RA. [2018] Oncotarget. 9 (47), 28625-28637