Electron Microscopy

To see what no one has seen before

Whether you are interested in learning how to do electron microscopy (EM) yourself or prefer us to do EM for you – we can help! We offer a wide variety of preparation and visualization techniques for biological samples ranging from standard methods to cutting-edge cryo-EM for high-resolution 2D or 3D imaging. We also provide a basic scanning EM service to visualize surface structures of biological samples.

Need EM of a biological sample? Want to learn how to do EM yourself? Interested in learning more about our EM services?

SERVICES

Electron microscopy training and infrastructure usage

Infrastructure users receive thorough training in the techniques/instruments they are interested in. All our instruments - from basic sample preparation equipment to our most sophisticated electron microscopes - are available to users 24/7. We further support our users in planning, execution, and interpretation of all EM-related experiments and regularly organize EM workshops and microscopy training.

EM service to visualize biological samples

We can do EM for you and have experience in the visualization of the following samples:

  • Molecules (RNA, DNA, proteins, lipids)
  • Complexes (liposomes, emulsions, synthetic structures)
  • Viruses
  • Bacteria
  • Organelles
  • Eukaryotic cells (fungi, plants, animals)
  • Tissues
  • Surface structures    

 

We are also very interested in establishing protocols for new samples.

Sample preparation techniques

We offer a wide variety of different sample preparation techniques to ensure optimal preservation of your specimen:

  • Negative staining for rapid visualization of macromolecules, proteins, viruses, organelles, or bacteria
  • Conventional chemical fixation for tissue samples and cell monolayers
  • High pressure freezing and freeze substitution for superior cellular preservation of cells and tissues
  • Rotary shadowing for high contrast examination of protein complexes
  • Freeze fracturing and etching for visualization of surfaces, membranes, and the inside of membranous compartments
  • Plunge freezing (immersion freezing) for cryo-EM (“cryo plunge freezing”) for best possible preservation of small samples close to their native state
  • Tokuyasu as a method for cryo-sectioning in combination with immunogold labeling
  • Immunolabeling to locate structures of interest
  • Ultramicrotomy: ultra-thin sectioning of resin-embedded samples
  • Sample preparation for SEM (scanning electron microscopy) to study surface structures

Imaging techniques

We offer the following EM imaging techniques to visualize your samples:

  • Basic Scanning Electron Microscopy (SEM) to visualize the surface topology of samples
  • Transmission Electron Microscopy (TEM) to examine ultrastructure
    • Conventional 2D EM
    • Tomography - 3D EM
    • Cryo-EM (single particle and cryo-electron tomography)
  • Correlative Microscopy

EQUIPMENT

The FEI Morgagni 268D is a robust and easy-to-use 100 kV TEM equipped with an 11-megapixel Morada CCD camera. The microscope is easy to use and tailored for sample screening and routine visualization of:

  • Negatively-stained samples
  • Rotary-shadowed samples
  • Ultrathin sections
  • Immunolabelled samples

Please click here for more information.

The FEI Tecnai G2 20 (T20) is a 200 kV TEM equipped with an Eagle 4k HS camera and can be used for 2D and 3D (tomography) visualization of:

 

  • Negatively-stained samples (screening and automated data recording)
  • Rotary-shadowed samples
  • Room temperature tomography of resin-embedded samples

 

Please click here for more information.

The 200 kV Thermo Scientific Glacios is a cryo-TEM for high-throughput sample screening and fully automated data recording. The Glacios is exclusively used for cryo-EM (single particle and cryo-tomography). Watch a time-lapse video of the installation below.

 

Please click here for more information.

 

This is a robust and easy-to-use table top scanning electron microscope for visualization of surface properties at higher resolution and deeper focus depth than achievable by light microscopy. The image is generated with back-scattered electrons induced by an electron beam of 15 keV.

 

Sample preparation is straightforward since it does not require coating with a conductive layer. The biological material can be frozen in liquid nitrogen. Alternatively, it can be chemically fixed and critical point-dried.

Additionally, we offer the following equipment and techniques:

  • Immersion and slam freezing
  • High vacuum evaporators and sputter coaters
  • High pressure freezing and freeze substitution
  • Sectioning
  • Embedding
  • Sample preparation for scanning electron microscopy
  • Ancillary equipment
  • Light microscopes

Please click here for more information.

 

Installation of GLACIOS at VBCF Electron Microscopy Facility

USER INFORMATION

To book your services, please provide the following details in a service request (link to document-pdf): 

  • What is your scientific question?
  • Which organisms and samples are you working with?
  • Do you have preliminary results?
  • Are there any papers describing what you want to do?

If you want to use equipment or require training, please fill out the Infrastructure Usage and Training Request form (link to document-pdf).

still to come

The fees we charge to our academic users only cover approximately half of the running costs. The remaining costs are provided via generous funding from the Austrian Federal Ministry of Education, Science and Research and the City of Vienna. Therefore, it is mandatory to acknowledge the facility and our funding bodies for all work done in the facility. Failure to do so can result in full costs being charged.

Suggestions for citing/acknowledging the Facility:

  • In case of co-authorship:

The EM Facility of the Vienna BioCenter Core Facilities GmbH (VBCF) acknowledges funding from the Austrian Federal Ministry of Education, Science and Research and the City of Vienna.

  • For acknowledging services by the EM Facility:

XXXXXX was performed by the EM Facility of the Vienna BioCenter Core Facilities GmbH (VBCF), member of the Vienna BioCenter (VBC), Austria.

  • For acknowledging instrument usage in the EM Facility:

Samples were prepared / data was recorded at the EM Facility of the Vienna BioCenter Core Facilities GmbH (VBCF), member of the Vienna BioCenter (VBC), Austria.

 

PUBLICATIONS

Monoacyl-phospatidylcholine based drug delivery systems for lipophilic drugs: Nanostructured lipid carriers vs. nano-sized emulsions
Wolf M., Reiter F., Heuser T., Kotisch H., Klang V. and Valenta C. (2018) Journal of Drug Delivery Science and Technology 46:490-497

Subcellular analysis of pigeon hair cells implicates vesicular trafficking in cuticulosome formation and maintenance
Nimpf S., Malkemper E.P., Lauwers M., Ushakova L., Nordmann G., Wenninger-Weinzierl A., Burkard T.R.,  Jacob S., Heuser T., Resch G.P., Keays D.A. (2017) eLife.29959

Different Potential of Extracellular Vesicles to Support Thrombin Generation: Contributions of Phosphatidylserine, Tissue Factor, and Cellular Origin
Tripisciano C., Weiss R., Eichhorn T., Spittler A., Heuser T., Fischer M.B., Weber V. (2017), Sci Rep. 7(1):6522

Monoacyl-phospatidylcholine nanostructured lipid carriers: Influence of lipid and surfactant content on in vitro skin permeation of flufenamic acid and fluconazole
Wolf M., Klang V., Halper M., Stix C., Heuser T., Kotisch H., Valenta C. (2017), Journal of Drug Delivery Science and Technology 41:419–430

The structure and DNA-binding properties of Mgm101 from a yeast with a linear mitochondrial genome
Pevala V., Truban D., Bauer J.A., Košťan J., Kunová N., Bellová J., Brandstetter M., Marini V., Krejčí L., Tomáška L., Nosek J., Kutejová E. (2016), Nucl. Acids Res. 44(5): 2227-2239

Semi-solid fluorinated-DPPC liposomes: Morphological, rheological and thermic properties as well as examination of the influence of a model drug on their skin permeation
Mahrhauser D.S., Reznicek G., Kotisch H., Brandstetter M., Nagelreiter C., Kwizda K., Valenta C. (2015) International Journal of Pharmaceutics, 486(1–2):350–355

Size analysis of nanoparticles extracted from W/O emulsions
Nagelreiter C., Kotisch H., Heuser T., Valenta C. (2015), Int J Pharm. 488(1-2):29-32.

Autophagy facilitates secretion and protects against degeneration of the Harderian gland
Koenig U., Fobker M., Lengauer B., Brandstetter M., Resch G.P., Gröger M., Plenz G., Pammer J., Barresi C., Hartmann C., Rossiter H. (2015), Autophagy. 11(2):298-313

Topical delivery of acetyl hexapeptide-8 from different emulsions: influence of emulsion composition and internal structure
Hoppel M., Reznicek G., Kählig H., Kotisch H., Resch G.P., Valenta C. (2015), Eur J Pharm Sci. 68:27-35

No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening
Edelman N.B., Fritz T., Nimpf S., Pichler P., Lauwers M., Hickman R.W., Papadaki-Anastasopoulou A., Ushakova L., Heuser T., Resch G.P., Saunders M., Shaw J.A., Keays D.A. (2015), Proc Natl Acad Sci U S A112(1):262-7

A Structural Basis for How Motile Cilia Beat
Satir P., Heuser T., Sale W.S (2014), BioScience 64(12):1073-83 

A dual role for autophagy in a murine model of lung cancer
Rao S., Tortola L., Perlot T., Wirnsberger G., Novatchkova M., Nitsch R., Sykacek P., Frank L., Schramek D., Komnenovic V., Sigl V., Aumayr K., Schmauss G., Fellner N., Handschuh S., Glösmann M., Pasierbek P., Schlederer M., Resch G.P., Ma Y. (2014),  Nature Communications 5:3056

Electron Tomography and Simulation of Baculovirus Actin Comet Tails Support a Tethered Filament Model of Pathogen Propulsion
Mueller J., Pfanzelter J., Winkler C., Narita A., Le Clainche C., Nemethova M., Carlier M., Maeda Y., Welch M.D., Ohkawa T., Schmeiser C., Resch G.P., Small J.V. (2014), PLoS Biology 12(1):e1001765 

Membrane deformation and scission by the HSV-1 nuclear egress complex
Bigalke J.M., Heuser T., Nicastro D., Heldwein E.E. (2014), Nat Commun 5:4131

Mechanosensing through focal adhesion-anchored intermediate filaments
Gregor M., Osmanagic-Myers S., Burgstaller G., Wolfram M., Fischer I., Walko G., Resch G.P., Jörgl A., Herrmann H., Wiche G. (2014), FASEB J. 28(2):715-29 

Protein-mediated transformation of lipid vesicles into tubular networks
Simunovic M., Mim C., Marlovic T.C., Resch G., Unger V.M., Voth G.A. (2013), Biophys J. 105(3):711-9 

Identification of Arabidopsis Meiotic Cyclins Reveals Functional Diversification among Plant Cyclin Genes
Bulankova P., Akimcheva S., Fellner N., Riha K. (2013), PLoS Genet. 9(5):e1003508 

An Iron-Rich Organelle in the Cuticular Plate of Avian Hair Cells
Lauwers M., Pichler P., Edelman N.B., Resch G.P., Ushakova L., Salzer M.C., Heyers D., Saunders M., Shaw J., Keays D.A. (2013), Current Biology 23(10):924-9

The transcription factor c-Jun protects against sustained hepatic endoplasmic reticulum stress thereby promoting hepatocyte survival
Fuest M., Willim K., Macnelly S., Fellner N., Resch G.P., Blum H.E., Hasselblatt P. (2012), Hepatology 55(2):408-18.

Actin branching in the initiation and maintenance of lamellipodia
Vinzenz M., Nemethova M., Schur F., Mueller J., Narita A., Urban E., Winkler C., Schmeiser C., Koestler S.A., Rottner K., Resch G.P., Maeda Y., Small J.V. (2012), J Cell Sci. 125(Pt 11):2775-85.

Optimisation of multiple W/O/W nanoemulsions for dermal delivery of aciclovir
Schwarz J.C., Klang V., Karall S., Mahrhauser D., Resch G.P., Valenta C. (2012), Int J Pharm 435(1):69-75.

Nanocarriers for dermal drug delivery: Influence of preparation method, carrier type and rheological properties
Schwarz J.C., Weixelbaum A., Pagitsch E., Löw M., Resch G.P., Valenta C. (2012), Int J Pharm 437(1-2):83-8.

ACKNOWLEDGEMENTS

SUMO chain formation relies on the amino-terminal region of SUMO conjugating enzyme and has dedicated substrates in plants
Tomanov K., Nehlin L., Ziba I., Bachmair A. (2018), Biochemical Journal 475(1):61-74

The IAP family member BRUCE regulates autophagosome-lysosome fusion
Ebner P., Poetsch I., Deszcz L., Hoffmann T., Zuber J., Ikeda F. (2018), Nat Commun. 9(1):599

The Inner Nuclear Membrane Is a Metabolically Active Territory that Generates Nuclear Lipid Droplets
Romanauska A., Köhler A. (2018), Cell 174:1-16

Load Adaptation of Lamellipodial Actin Networks
Mueller J., Szep G., Nemethova M., de Vries I., Lieber A.D., Winkler C., Kruse K., Small J.V., Schmeiser C., Keren K., Hauschild R., Sixt M. (2017), Cell 171:1–13

High throughput inclusion body sizing: Nano particle tracking analysis
Reichelt W.N., Kaineder A., Brillmann M., Neutsch L., Taschauer A., Lohninger H., Herwig C. (2017) Biotechnol J.  doi: 10.1002/biot.201600471.

Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis
Beckham K.S., Ciccarell, L., Bunduc C.M., Mertens H.D., Ummels R., Lugmayr W., Mayr J., Rettel M., Savitski M.M., Svergun D.I., Bitter W., Wilmanns M., Marlovits T.C., Parret A.H., Houben E.N. (2017) Nat Microbiol. 2:17047.

RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer membrane complex by single-particle analysis
Rao S., Sigl V., Wimmer R.A., Novatchkova M., Jais A., Wagner G., Handschuh S., Uribesalgo I., Hagelkruys A., Kozieradzki I., Tortola L., Nitsch R., Cronin S.J., Orthofer M., Branstetter D., Canon J., Rossi J., D'Arcangelo M., Botling J., Micke P., Fleur L., Edlund K., Bergqvist M., Ekman S., Lendl T., Popper H., Takayanagi H., Kenner L., Hirsch F.R., Dougall W., Penninger J.M. (2017), Genes Dev. 31(20):2099-2112

Control of type III protein secretion using a minimal genetic system
Song M., Sukovich D.J., Ciccarelli L., Mayr J., Fernandez-Rodriguez J., Mirsky E.A., Tucker A.C., Gordon D.B., Marlovits T.C., Voigt C.A. (2017), Nat Commun. 8:14737.

Human amniotic membrane as newly identified source of amniotic fluid pulmonary surfactant
Lemke A., Castillo-Sánchez J.C., Prodinger F., Ceranic A., Hennerbichler-Lugscheider S., Pérez-Gil J., Redl H., Wolbank S. (2017), Scientific Reports 7: 6406

Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes
Leithner A., Eichner A., Mueller J., Reversat A., Brown M., Schwarz J., Merrin J., de Gorter D.J., Schur F., Bayerl J., de Vries I., Wieser S., Hauschild R., Lai F.P., Moser M., Kerjaschki D., Rottner K., Small J.V., Stradal T.E., Sixt M. (2016), Nat Cell Biol.  2016 Nov;18(11):1253-1259.

Structural and Functional Characterization of the Bacterial Type III Secretion Export Apparatus
Dietsche T., Tesfazgi Mebrhatu M., Brunner M.J., Abrusci P., Yan J., Franz-Wachtel M., Schärfe C., Zilkenat S., Grin I., Galán J.E., Kohlbacher O., Lea S., Macek B., Marlovits T.C., Robinson C.V., Wagner S. (2016) PLoS Pathog. 12(12):e1006071.

The BTB domains of the potassium channel tetramerization domain proteins prevalently assume pentameric states
Smaldone G., Pirone L., Pedone E., Marlovits T., Vitagliano L., Ciccarelli L. (2016) FEBS Lett. 590(11):1663-71.

Two Independent Pathways within Selective Autophagy Converge to Activate Atg1 Kinase at the Vacuole
Torggler R., Papinski D., Brach T., Bas L., Schuschnig M., Pfaffenwimmer T., Rohringer S., Matzhold T., Schweida D., Brezovich A., Kraft C. (2016) MOL CELL 64(2):221-235.

An endosomal tether undergoes an entropic collapse to bring vesicles together
Murray D.H., Jahnel M., Lauer J, Avellaneda M.J., Brouilly N., Cezanne A., Morales-Navarrete H., Perini E.D., Ferguson C., Lupas A.N., Kalaidzidis Y., Parton R.G., Grill S.W., Zerial M. (2016) Nature doi:10.1038/nature19326

A MORN Repeat Protein Facilitates Protein Entry into the Flagellar Pocket of Trypanosoma brucei
Morriswood B., Schmidt K. (2015), EUKARYOT CELL 14(11):1081-93.

A molecular ruler regulates cytoskeletal remodelling by the Rho kinases
Truebestein L.,  Elsner D.J., Fuchs E., Leonard T.A. (2015), Nature Communications 6:10029

Nuclear Pore Basket Proteins Are Tethered to the Nuclear Envelope and Can Regulate Membrane Curvature
Mészáros N., Cibulka J., Mendiburo M.J., Romanauska A., Schneider M., Köhler A. (2015) Dev Cell. 33(3): 285–298

Non-catalytic motor domains enable processive movement and functional diversification of the kinesin-14 Kar3
Mieck C.,  Molodtsov M.I., Drzewicka K., van der Vaart B., Litos G., Schmauss G., Vaziri A., Westermann S. (2015), eLife4:e04489

SYBR Green-activated sorting of Arabidopsis pollen nuclei based on different DNA/RNA content
Schoft V.K. , Chumak N., Bindics J., Slusarz L., Twell D., Köhler C., Tamaru H. (2015) Plant Reprod 28(1):61-72

The ciliary transition zone functions in cell adhesion but is dispensable for axoneme assembly in C. elegans
Schouteden C., Serwas D., Palfy M., Dammermann A. (2015), J Cell Biol. 210(1):35-44

Ultrastructural analysis of Caenorhabditis elegans cilia
Serwas D., Dammermann A. (2015), Methods Cell Biol. 129:341-67

The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells
Jurkin J., Henkel T., Nielsen A.F., Minnich M., Popow J., Kaufmann T., Heindl K., Hoffmann T., Busslinger M., Martinez J. (2014), EMBO J. 33(24):2922-36.

Jagunal homolog 1 is a critical regulator of neutrophil function in fungal host defense
Wirnsberger G., Zwolanek F., Stadlmann F., Tortola L., Wan Liu S., Perlot T., Järvinen P., Dürnberger G., Kozieradzki I., Sarao R., De Martino A., Boztug K., Mechtler K., Kuchler K., Klein C., Elling U., Penninger J.M. (2014), Nature Genetics 46:1028–1033.

Assembly mechanism of Trypanosoma brucei BILBO1, a multidomain cytoskeletal protein
Vidilaseris K., Shimanovskaya E., Esson H.J., Morriswood B., Dong G. (2014), J Biol Chem. 289(34):23870-81

Characterization of a DNA exit gate in the human cohesin ring
Huis in ’t Veld P.J., Herzog F., Ladurner R., Davidson I.F., Piric S., Kreidl E., Bhaskara V., Aebersold R., Peters J.M. (2014), Science Vol. 346(6212):968-972

A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A
Hornung P., Troc P., Malvezzi F., Maier M., Demianova Z., Zimniak T., Litos G., Lampert F., Schleiffer A., Brunner M., Mechtler K., Herzog F., Marlovits T.C., Westermann S. (2014), J Cell Biol. 206(4):509-24

The endocytic activity of the flagellar pocket in Trypanosoma brucei is regulated by an adjacent phosphatidylinositol phosphate kinase
Demmel L., Schmidt K., Lucast L., Havlicek K., Zankel A., Koestler T., Reithofer V., de Camilli P., Warren G. (2014), J CELL SCI;127(Pt 10):2351-64.

Structure of a pathogenic type 3 secretion system in action
Radics, J., Königsmaier, L., Marlovits, TC. (2014), Nat Struct Mol Biol. 21(1):82-7.

Sec16 determines the size and functioning of the Golgi in the protist parasite, Trypanosoma brucei
Sealey-Cardona M., Schmidt K., Demmel L., Hirschmugl T., Gesell T., Dong G., Warren G. (2014), TRAFFIC;15(6):613-29.

Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle
Pickl-Herk A., Luque D., Vives-Adrián L., Querol-Audí J., Garriga D., Trus B.L., Verdaguer N., Blaas D., Castón J.R. (2013), Proc Natl Acad Sci U S A. 110(50):20063-8.

Human rhinovirus subviral a particle binds to lipid membranes over a twofold axis of icosahedral symmetry
Kumar M., Blaas D. (2013), J Virol. 87(20):11309-12.

Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3'-end
Harutyunyan S., Kumar M., Sedivy A., Subirats X., Kowalski H., Köhler G., Blaas D. (2013), PLoS Pathog. 9(4): e1003270.

Epidermal keratinocytes form a functional skin barrier in the absence of Atg7 dependent autophagy                                                                  Rossiter H., König U., Barresi C., Buchberger M., Ghannadan M., Zhang C.F., Mlitz V., Gmeiner R., Sukseree S., Födinger D., Eckhart L., Tschachler E.J. (2013), Dermatol Sci. 2013 Jul;71(1):67-75.

Direct Determination of Actin Polarity in the Cell
Narita A., Mueller J., Urban E., Vinzenz M., Small J.V., Maeda Y. (2012), J Mol Biol. 2419(5):359-68.

Morphology of the trypanosome bilobe, a novel cytoskeletal structure
Esson H.J., Morriswood B., Yavuz S., Vidilaseris K., Dong G., Warren G. (2012), EUKARYOT CELL 11(6):761-772.

SAS-6 coiled-coil structure and interaction with SAS-5 suggest a regulatory mechanism in C. elegans centriole assembly
Qiao R., Cabral G., Lettman M.M., Dammermann A., Dong G. (2012), EMBO J. 31(22): 4334–4347.