Precocious expression of Blimp1 in B cells causes autoimmune disease with increased self-reactive plasma cells

Peter Bönelt1, Miriam Wöhner1,†, Martina Minnich1,†, Hiromi Tagoh1,‡, Maria Fischer1, Markus Jaritz1, Anoop Kavirayan1, Manasa Garimella3, Mikael CI Karlsson3 & Meinrad Busslinger1,*,**

Abstract

The transcription factor Blimp1 is not only an essential regulator of plasma cells, but also a risk factor for the development of autoimmune disease in humans. Here, we demonstrate in the mouse that the Prdm1 (Blimp1) gene was partially activated at the chromatin and transcription level in early B cell development, although mature Prdm1 mRNA did not accumulate due to post-transcriptional regulation. By analyzing a mouse model that facilitated ectopic Blimp1 protein expression throughout B lymphopoiesis, we could demonstrate that Blimp1 impaired B cell development by interfering with the B cell gene expression program, while leading to an increased abundance of plasma cells by promoting premature plasmablast differentiation of immature and mature B cells. With progressing age, these mice developed an autoimmune disease characterized by the presence of autoantibodies and glomerulonephritis. Hence, these data identified ectopic Blimp1 expression as a novel mechanism, through which Blimp1 can act as a risk factor in the development of autoimmune disease.

Keywords autoimmune disease; Blimp1-mediated loss of B cells; ectopic expression throughout the B cell lineage; increased plasma cells differentiation; Prdm1 (Blimp1) transcription in developing B cells

Introduction

Plasma cells serve an important role in the acute response to infection and in long-term protection of the host by providing humoral immunity through continuous secretion of antibodies. Moreover, plasma cells often contribute also to the pathogenesis of autoimmune disease by secreting self-reactive antibodies (Suurmond & Diamond, 2015; Tsokos et al, 2016). The zinc finger transcription factor Blimp1 (encoded by the Prdm1 gene) is a key regulator of plasma cells (Nutt et al, 2007), which was initially discovered by its ability to induce plasmacytic differentiation upon ectopic expression in mature B cells (Turner et al, 1994). Within the B-lymphoid lineage, Blimp1 is predominantly expressed in antibody-secreting cells, where its highest expression is observed in quiescent long-lived plasma cells (Kallies et al, 2004). Consistent with this expression pattern, antibody-secreting cells are lost in mice with a B cell-specific deletion of the Prdm1 gene, demonstrating that Blimp1 is essential for the generation of plasmablasts and plasma cells (Shapiro-Shelef et al, 2003; Kallies et al, 2007). Blimp1 expression is furthermore required in long-lived bone marrow plasma cells to maintain their secretory function (Tellier et al, 2016). Interestingly, the human PRDM1 gene is frequently mutated on both alleles in activated B cell-like diffuse large B cell lymphoma (ABC-DLBCL), demonstrating that loss of the tumor-suppressor gene PRDM1 contributes to lymphomagenesis by preventing plasma cell differentiation (Pasqualucci et al, 2006; Tam et al, 2006). In addition, genome-wide association studies (GWAS) have identified PRDM1 as a susceptibility gene for the autoimmune diseases systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), as two informative single nucleotide polymorphisms (SNPs) have been specifically mapped in the intergenic region between the PRDM1 and ATG5 loci in SLE and RA patients (Gateva et al, 2009; Raychaudhuri et al, 2009; Zhou et al, 2011; Appendix Fig S1A). To date, there are, however, no functional data available that would causally implicate PRDM1 in the pathogenesis of SLE or RA.

At the molecular level, Blimp1 functions as a transcriptional repressor and activator by recruiting chromatin-remodeling and histone-modifying complexes to its target genes in plasmablasts...
Little is so far known about how Blimp1 expression is regulated in plasmablasts and plasma cells. MicroRNAs (miR-30b,d,e) have been implicated in posttranscriptional regulation of Blimp1 expression by controlling mRNA decay and translation through binding to ARE motifs. Further, miR-30b,d,e have been shown to regulate genes involved in immunoglobulin secretion. Importantly, Blimp1 strongly induces the transcription of the immunoglobulin heavy-chain (lgk) and κ light-chain (lgk) genes and also regulates the posttranscriptional expression switch from the membrane-bound to secreted Ig heavy-chain protein in plasmablasts (Minnich et al., 2016).

Results

The Prdm1 locus is transcriptionally active already in early B cell development

We previously characterized open chromatin regions (sites A-H) upstream of the Prdm1 (Blimp1) gene in plasmablasts, which highly express Blimp1 (Wöhner et al., 2016; Fig 1A). To investigate the epigenetic status of the Prdm1 locus in early B cell development, we mapped open chromatin regions and different histone modifications by ATAC-seq and ChiP-seq analyses in pro-B cells, which do not express Blimp1. Unexpectedly, the Prdm1 promoter was partially open and contained bivalent chromatin as shown by the presence of active (H3K4me2, H3K4me3, H3K9ac) and repressive (H3K27me3) histone marks. The upstream regions A, B, and C were also partially activated in pro-B cells, as shown by the presence of bivalent chromatin at region A and a subset of open chromatin sites in regions B and C compared to plasmablasts (Fig 1A).

The observed activation at the chromatin level may indicate that the Prdm1 gene is already transcribed during B cell development. To test this hypothesis, we measured the nascent transcript levels in bone marrow pro-B cells and splenic follicular B cells by global run-on sequencing (GRO-seq; Core et al., 2008). As shown in Fig 1B and C, Prdm1 and its neighboring gene Aig5 were similarly transcribed in bone marrow pro-B cells and splenic follicular (FO) B cells. Despite similar transcription rates, only a low amount of Prdm1 mRNA could be detected by RNA-seq analysis in both cell types in contrast to the relatively high abundance of Aig5 mRNA (Fig 1B and C). Hence, these data indicate that posttranscriptional regulation prevents the accumulation of Prdm1 mRNA during B cell development.

Posttranscriptional control can be mediated by microRNAs that act principally through the control of mRNA decay and translation by binding to the 3′ untranslated region (3′ UTR) of mRNA (Pasquinelli, 2012). Alternatively, RNA-binding proteins interact with AU-rich elements (AREs) in the 3′ UTR, which promotes mRNA deadenylation and decay (Turner et al., 2014). Both mechanisms have been implicated in the posttranscriptional control of Prdm1 mRNA (Gururajan et al., 2010; Nasir et al., 2012; Parlato et al., 2013; Kassambara et al., 2017). To investigate the role of the 3′ UTR in the posttranscriptional regulation of Prdm1, we deleted most (2,253 bp; 90%) of the 2,490-bp long 3′ UTR by CRISPR/Cas9-mediated mutagenesis, which left only one consensus ARE motif and one microRNA-binding site in the truncated 3′ UTR (Pasquinelli, 2012). Conversely, Blimp1 protein expression decreased due to the deletion of the ARE motives (Appendix Fig S1B and C). In contrast to expectation, this large deletion did not lead to increased Prdm1 mRNA accumulation (Appendix Fig S1D) or elevated Blimp1 protein expression (Appendix Fig S1E) in early B cells of Prdm1190/190 mice and had no effect on B cell development in these mice (Appendix Fig S1F). We conclude therefore that a large part (90%) of the 3′ UTR is dispensable for the posttranscriptional regulation of Prdm1 expression.
Premature expression of Blimp1 in lymphoid lineages of the Prdm1^{hiCd2/+} mouse

Given the observed transcriptional activity of Prdm1 in early B lymphopoiesis, we asked the question whether B cell development would be affected by precocious expression of the Blimp1 protein in the B cell lineage. To this end, we generated a mouse model facilitating ectopic Blimp1 expression throughout B lymphopoiesis by inserting a 258-bp long terminal repeat (LTR) sequence of the Moloney murine leukemia virus (MoMLV) together with the...
IRES-hCD2 (ihCd2) reporter gene between the Prdm1 stop codon and the 3’ UTR (Fig 2A) in the Prdm1ihCd2 allele (Minnich et al., 2016). The insertion contains both copies of the 75-bp repeat of the Moloney murine leukemia virus (MoMLV) enhancer, which binds multiple transcription factors and is active in the lymphoid system (Speck et al., 1990; Fig 2A). The inserted MoMLV enhancer induced active chromatin at the 3’ end of the Prdm1 gene in Prdm1ihCd2/+ pre-B cells (Appendix Fig S2A) and led to a 66- and 58-fold increase of Prdm1 mRNA expression in Prdm1ihCd2/+ pre-B and pre-B cells compared to wild-type counterparts, as determined by RNA-seq (Fig 2B). RT-qPCR analysis revealed that the nascent Prdm1 transcripts were increased 26- to 28-fold in Prdm1ihCd2/+ pre-B cells relative to wild-type pre-B cells (Fig 2C). Moreover, the level of nascent Prdm1 transcripts in Prdm1ihCd2/+ pre-B cells was only 3.4- to 4-fold below that of LPS-induced plasmablasts of both the Prdm1ihCd2/+ and wild-type genotype, which furthermore revealed that the MoMLV enhancer did not contribute to the high transcription rate of Prdm1 in plasmablasts (Fig 2C). Notably, the inserted MoMLV enhancer did not affect Atg5 transcription and mRNA expression (Fig 2B and C) and was part of the Prdm1-ihCd2 transcript that still contained the 3’ UTR of the Prdm1 gene (Appendix Fig S2B). Moreover, Flpe-mediated deletion of the frt-flanked sequences containing the MoMLV enhancer and ihCd2 reporter gene (Fig 2A) restored normal physiological expression of Prdm1 in the B cell lineage (Minnich et al., 2016). In summary, these data demonstrate that the inserted MoMLV enhancer strongly activated Prdm1 transcription and mRNA expression in Prdm1ihCd2/+ pre-B and pre-B cells.

We next analyzed the expression of the hCD2 protein, reporting Prdm1 mRNA expression, at different B cell developmental stages in Prdm1ihCd2/+ mice by flow cytometric analysis. hCD2 expression was already detected in uncommitted lymphoid progenitors (LMPPs, ALPs, BLPs); was increased in pre-B, pre- B, and immature B cells of the bone marrow; was reduced in marginal zone (MZ) and follicular (FO) B cells of the spleen as well as in B-1 cells of the peritoneal cavity; and, as expected, was most highly activated in splenic plasma cells (Fig 2D and Appendix Fig S2C). hCD2 expression was low in double-negative (DN) thymocytes, increased in double-positive (DP) thymocytes, and was still observed in splenic CD4 and CD8 T cells as well as in natural killer (NK) cells, whereas hCD2 expression was absent in granulocytes and macrophages (Fig 2E, Appendix Fig S2D and data not shown). Next, we directly investigated expression of the Blimp1 protein by intracellular staining (Fig 2D and E, and Appendix Fig S2C and D), which was, however, less sensitive compared to the hCD2 analysis, but closely correlated with the hCD2 expression pattern (Appendix Fig S2E). Blimp1 expression was readily detectable in BLPs, pro-B, pre-B, immature B cells, and plasma cells of the bone marrow as well as in DP thymocytes of Prdm1ihCd2/+ mice (Fig 2D and Appendix Fig S2D) and was confirmed for pre-B cells by immunoblotting (Fig 2F). We next generated Prdm1ihCd2/+ mice to examine whether ectopic Blimp1 expression from the Prdm1ihCd2 allele may auto-regulate and thus activate expression of the second Prdm1ihCd2 allele (Kallies et al., 2004). Despite hCD2 expression, the pro-B, pre-B, and immature B cells of Prdm1ihCd2/+ mice did not express GFP (Appendix Fig S2F), demonstrating that Blimp1-mediated auto-regulation did not occur in these B cell subsets. Collectively, these data demonstrate that the MoMLV enhancer insertion in the Prdm1 locus resulted in premature Blimp1 expression during B cell development and, to a lower degree, in mature T cells.

Impaired B cell development in Prdm1ihCd2/+ mice

Ectopic expression of Blimp1 resulted in a 2.4-fold decrease in total B cells (CD19+ B220+) in the bone marrow of Prdm1ihCd2/+ mice compared to wild-type mice, as shown by flow cytometry (Fig 3A). Surprisingly however, B cells were almost completely lost in homozygous Prdm1ihCd2/+ mice (Fig 3A), indicating that a further increase of ectopic Blimp1 expression effectively disrupted B cell development. While pro-B cells (Kit+CD19+ CD25+ IgM-IgD+) were present at similar numbers in the bone marrow of Prdm1ihCd2/+ mice, pre-B (Kit+CD19+ CD25+ IgM+ IgD+), immature B (CD19+ IgM+ IgD+), and recirculating B (CD19+ IgM+IgD-) cells were reduced 3.2-, 2.5-, and 8-fold, respectively (Fig 3B). Moreover, splenic MZ (CD19+ CD21hiCD23lo) and FO (CD19+ CD21loCD23hi) B cells as well as peritoneal B-1a cells (CD5+ CD19+ CD23+) were decreased 2.6-, 6.9-, and 21-fold, respectively, in Prdm1ihCd2/+ mice compared to wild-type

Figure 2. Premature expression of the Blimp1 protein in Prdm1ihCd2/+ lymphocytes.

A Schematic diagram of the 3’ end of the Prdm1ihCd2 allele (Minnich et al., 2016). The frt-flanked IRES-hCD2 (ihCd2) reporter gene, which was linked to a 258-bp long terminal repeat (LTR) sequence of the Moloney murine leukemia virus (MoMLV, green), was inserted between the stop codon and 3’ UTR of the Prdm1 gene. C-terminal sequences of exon 8 contained in-frame tag sequences encoding the Flag and V5 epitopes, two TEV protease cleavage sites, and a biotin acceptor sequence. The inserted MoMLV enhancer sequence is shown below together with its regulatory elements (Speck et al., 1990). GRE, glucocorticoid response element; LV, leukemia virus factor-binding site; NFI, nuclear factor 1; polyadenylation site, PA.

B Expression of Prdm1 and Atg5 mRNA in ex vivo sorted pre-B and pre-B cells from the bone marrow of Prdm1ihCd2/+ or wild-type (WT) mice. mRNA expression is shown as mean expression value (TPM) with SEM based on two independent RNA-seq experiments for each cell type and genotype.

C RT-qPCR analysis of nascent Prdm1 and Atg5 transcripts in ex vivo sorted pre-B cells and in in vitro differentiated plasmablasts (PB) of the indicated genotypes. Plasmablasts were generated by stimulation of splenic FO B cells for 4 days with LPS. The data were normalized to those of the ubiquitously expressed control gene Tbp and are presented relative to those of the wild-type pre-B cells (set as 1). Nascent transcripts were PCR-amplified with primers located in the indicated introns (Table EV9). Statistical data are shown as mean value ± SEM and were analyzed by the Student’s t-test; *P < 0.05, **P < 0.01. Each dot corresponds to one mouse.

D, E Flow cytometric analysis of hCD2 cell surface expression and intracellular Blimp1 expression of the indicated cell types. Bone marrow of Prdm1ihCd2/+ (red) or wild-type (WT, gray) mice was used to analyze ALPs, BLPs, pre-B, pre-B, immature B cells, NK cells, and granulocytes, whereas the spleen was used for flow cytometric analysis of FO B, MZ B, and plasma cells as well as naive CD4 T and naive CD8 T cells of both genotypes. The histograms show hCD2 (top row) and Blimp1 (bottom row) expression for the different cell types, which were defined as described in the Appendix Supplementary Methods. Wild-type FO B cells (dashed line) were used as negative control for the Blimp1 staining in plasma cells. The difference in mean fluorescence intensity (AMFI) between the two genotypes is shown for each cell type.

F Immunoblot analysis of Blimp1 and the TATA-binding protein (TBP) in nuclear extracts prepared from short-term cultured wild-type or Prdm1ihCd2/+ pro-B cells. Marker proteins of the indicated size (in kilodaltons) are shown to the right.
Blimp1 expression in B cells causes autoimmunity

Figure 2.

© 2018 The Authors

The EMBO Journal
mice (Fig 3C and Appendix Fig S3A). We next investigated whether the observed developmental defects were caused by apoptosis. Notably, the analysis of *ex vivo* Prdm1^{HES}-/− pro-B cells by two different apoptosis assays did not reveal increased cell death compared to wild-type pro-B cells (Fig 3D and Appendix Fig S3B), consistent with the observed similar abundance of Prdm1^{HES}-/− and wild-type pro-B cells in the bone marrow (Fig 3B). In contrast, Prdm1^{HES}-/− pre-B cells exhibited a 2-fold increase in apoptosis relative to wild-type pre-B cells (Fig 3D and Appendix Fig S3B). Interestingly, B cell development in the bone marrow and, to a lower degree, in the spleen was rescued in *Vav-Bcl2 Prdm1^{HES}-/−* mice (Appendix Fig S3C). Interestingly, Prdm1^{HES}-/− mice constitutively expressed the pro-survival protein Bcl2 from the Vav-Bcl2 transgene in all hematopoietic cell types (Ogilvy et al, 1999). Hence, apoptosis contributes to the B cell development defects observed in Prdm1^{HES}-/− mice.

To measure the *in vivo* lifespan of Blimp1-expressing FO B cells, we continuously labeled Prdm1^{HES}-/− and wild-type mice with the thymidine analogue bromodeoxyuridine (BrdU) for 10 days prior to flow cytometric analysis of BrdU incorporation in FO B cells (Fig 3E and F). As previously published (Rolink et al, 1998), BrdU was incorporated in only 10% of all FO B cells in contrast to 68% of the immature B cells (CD21[−]CD23[−]B220[−]CD19⁺) in the spleen of control wild-type mice (Fig 3E and F), indicating that few immature B cells were recruited into the quiescent FO B cell pool during the 10-day labeling period. In contrast, 21% (2.1-fold increase) of the splenic FO B cells in Prdm1^{HES}-/− mice incorporated BrdU during the first 10 days, but half of them were then replaced by unlabeled Prdm1^{HES}-/− FO B cells during the subsequent 1-5-day chase period in contrast to the wild-type FO B cells (Fig 3E and F). These data therefore revealed a shortened lifespan and thus more rapid turnover of Prdm1^{HES}-/− FO B cells compared to control FO B cells in the spleen.

The development of T and NK cells was only moderately affected even in homozygous Prdm1^{HES}-/− mice (Appendix Fig S3D–F). We conclude therefore that ectopic Blimp1 expression from the Prdm1^{HES} allele preferentially impaired B lymphopoiesis.

Blimp1-dependent deregulation of the B cell gene expression program

As an important role of Blimp1 in plasma cells is to suppress the B cell gene expression program (Shaffer et al, 2002; Minnich et al, 2016), we investigated the degree to which the ectopically expressed Blimp1 protein could interfere with the transcriptional program of developing B cells in Prdm1^{HES}-/− mice. By comparing the gene expression changes between Prdm1^{HES}-/− and wild-type pro-B cells, we identified 208 Blimp1-activated and 113 Blimp1-repressed genes, based on an expression difference of > 3-fold, an adjusted P-value of < 0.05, and an expression value of > 5 TPM (transcripts per million) in one of the two pro-B cell types (Fig 4A and Table EV1). The same expression analysis identified 280 Blimp1-activated and 125 Blimp1-repressed genes in Prdm1^{HES}-/− pro-B cells (Fig 4B and Table EV1) with an overlap of 67 activated and 42 repressed genes between pro-B and pre-B cells (Fig 4C and Appendix Fig S4A).

Notably, the comparison of Blimp1-regulated genes between Prdm1^{HES}-/− pro-B or pre-B cells and wild-type pre-plasmablasts (Minnich et al, 2016) revealed an overlap of 12 or 38 Blimp1-activated and 17 or 36 Blimp1-repressed genes (Appendix Fig S4A), respectively, indicating that some genes were similarly regulated by Blimp1 in early B cells and plasmablasts.

As the ectopically expressed Blimp1 protein contained a V5 epitope sequence (Fig 2A), we determined the genome-wide Blimp1-binding pattern in Prdm1^{HES}-/− pro-B cells by ChIP-seq analysis with an anti-V5 antibody. Peak calling with a stringent P-value of < 10^{−10} identified 762 Blimp1 peaks with a consensus Blimp1-binding motif in Prdm1^{HES}-/− pro-B cells (Fig 4D and Appendix Fig S4B). Although the Blimp1 peaks in Prdm1^{HES}-/− pro-B cells were 12-fold reduced in number compared to the Blimp1-bound sites (9,320) in plasmablasts (Minnich et al, 2016), the majority (88%) of them were also present in plasmablasts, but exhibited a 2.5-fold lower Blimp1-binding density compared to the corresponding Blimp1 peaks in plasmablasts (Fig 4D and E). Blimp1 binding was observed at one-third of all repressed genes in Prdm1^{HES}-/− pro-B or pre-B cells (Fig 4F and G), which resulted in nine commonly repressed Blimp1 target genes in Blimp1-expressing pro-B cells, pre-B cells, and plasmablasts (Fig 4G and Appendix Fig S4C and D). In contrast, Blimp1 binding was detected at only 4.3% of all activated genes in Prdm1^{HES}-/− pro-B or pre-B cells (Fig 4F), which resulted in the identification of only one commonly activated target gene in Blimp1-expressing pre-B cells and plasmablasts (Appendix Fig S4C). We conclude therefore that Blimp1 regulated gene expression in pro-B and pre-B cells primarily in an indirect manner, which is in marked contrast to the high proportion of...
Figure 3.
directly regulated Blimp1 target genes identified in plasmablasts (Minnich et al., 2016).

Annotation of the Blimp1-regulated genes in Prdm1<ihCd2/+> pre-B cells revealed that half of these genes coded for proteins of the following functional classes: 45 activated and 23 repressed cell surface proteins, 51 activated and 18 repressed signal transducers, 24 activated and 10 repressed transcriptional regulators, and 21 activated and 13 repressed metabolic enzymes (Appendix Fig S4E and Table EV1). The deregulated transcriptional regulators likely explain the indirect control of gene expression by Blimp1 in pre-B and pre-B cells (Fig 4H and Table EV1). Notably, the B cell commitment gene Ppx5 was 2.8-fold repressed in Prdm1<ihCd2/+> pre-B cells (Fig 4H), which was observed only at the pre-B and immature B cell stages of B lymphopoiesis (Appendix Fig S4F). The deregulation of multiple cell surface receptors and intracellular signal transducers suggested that Blimp1 affected the normal signaling responses of B cells (Fig 4I and Appendix Fig S4G). In summary, these data indicate that premature Blimp1 expression in B cells in a manner similar to Blimp1’s physiologic function interfered with the B cell gene expression program controlling B cell development.

Increased plasma cell development in the absence of GC B cells in Prdm1<ihCd2/+> mice

As ectopic Blimp1 expression interfered with the B-lymphoid gene expression program in B cells in a manner similar to Blimp1’s physiological role in plasma cells (Minnich et al., 2016), we next investigated whether premature Blimp1 expression could lead to increased plasma cell differentiation in Prdm1<ihCd2/+> mice. Indeed, plasma cells (Lin<−/−>B220<−/−>CD138<−/−>CD28<−/−>) were significantly increased in the spleen and bone marrow of non-immunized Prdm1<ihCd2/+> mice compared to wild-type mice at the age of 2–12 months (Fig 5A and B, and Appendix Fig S5A). Accordingly, the serum titers of IgM and IgG antibodies (measured by ELISA) as well as the number of plasma cells secreting different IgG isotype antibodies (determined by ELISPOT assay) were also increased in Prdm1<ihCd2/+> mice compared to wild-type littermates (Appendix Fig S5B and C). Interestingly, FO B cells in the spleen of non-immunized Prdm1<ihCd2/+> mice already expressed higher levels of the activation markers CD40, CD80, CD86, and MHCIId (Appendix Fig SSD), suggesting that the altered threshold for B cell activation may contribute to enhanced plasma cell differentiation in Prdm1<ihCd2/+> mice. We next immunized experimental and control mice with 4-hydroxy-3-nitrophenylacetyl-conjugated keyhole limpet hemocyanin (NP-KLH). At day 14 after immunization, anti-NP-IgM antibody-secreting cells (ASCs) were 4.6-fold increased in the spleen of Prdm1<ihCd2/+> mice, as determined by ELISPOT assay (Fig 5C), and the titers of anti-NP-IgM were 2.4-fold higher in the serum of Prdm1<ihCd2/+> mice compared to wild-type littermates, as measured by ELISA (Fig 5D). Notably, the increase of plasma cells was observed despite a 6-fold decrease of B cells in the presence of a similar number of total splenocytes in Prdm1<ihCd2/+> mice relative to wild-type littermates (Fig 5C and Appendix Fig S5E). We conclude therefore that plasma cell development was strongly enhanced also in immunized Prdm1<ihCd2/+> mice.

In contrast to the increased anti-NP-IgM levels, the serum titers of anti-NP-IgG1 and anti-NP-IgG2b were decreased in immunized Prdm1<ihCd2/+> mice compared to control littermates (Fig 5D). Moreover, the frequency of somatic hypermutation (SHM) at the rearranged IgH gene was reduced in splenic plasma cells of Prdm1<ihCd2/+> mice compared to wild-type littermates (Appendix Fig S5F). As suggested by the observed reduction of SHM, germinal center (GC) B cells (CD19<−/−>B220<−/−>CD138<−/−>CD28<−/−>) were strongly decreased in the spleen of Prdm1<ihCd2/+> mice relative to control mice at day 14 after NP-KLH immunization (Fig 5E) as well as in non-immunized mice (Appendix Fig S5G). Moreover, the few residual Prdm1<ihCd2/+> GC B cells did not express hCD2 (Blimp1) and revealed normal expression of the transcription factor Bce6 (Fig 5F), which is an essential regulator of GC B cell differentiation (Dent et al., 1997; Ye et al., 1997). Notably, follicular helper T (TFH) (CXCR5<−/−>PD-1<−/−>CD4<+>B220<−/−>), which provide T cell help to support GC B cell differentiation (Vinuesa et al., 2016), were 3.3-fold decreased in the spleen of immunized Prdm1<ihCd2/+> mice relative to wild-type mice and expressed hCD2 (Blimp1), albeit at different levels (Fig 5G and H). The hCD2<−/−>population of the Prdm1<ihCd2/+> TFF cells expressed little Blimp1 protein and minimally reduced levels of Bce6 (Fig 5H).

Figure 4. Blimp1-dependent deregulation of the B cell gene expression program.

A, B Scatter plot of gene expression differences in ex vivo sorted Prdm1<ihCd2/+> and wild-type (WT) pre-B (A) and pre-B (B) cells, based on two RNA-seq experiments for each cell type and genotype. The expression data of individual genes (indicated by dots) were plotted as normalized (norm) rlog values. Genes with an expression difference of >3-fold, an adjusted P-value of <0.05, and a TPM value of >5 (in one of the two pre-B or pre-B cell types, respectively) are colored in blue or red, corresponding to activation or repression by Blimp1.

C Expression of commonly activated (blue) and commonly repressed (red) genes in pre-B and pre-B cells. The log2-expression change observed between Prdm1<ihCd2/+> and wild-type pre-B cells (horizontal axis) as well as between Prdm1<ihCd2/+> and wild-type pre-B cells (vertical axis) is plotted for each gene. Lines indicated 2-fold (x2) expression differences.

D Identification of 762 Blimp1 peaks in short-term cultured Prdm1<ihCd2/+> pro-B cells, as detected by Chip-seq with an anti-V5 antibody and MAC5 peak calling with a P-value of <1×10−5. The 9320 Blimp1 peaks identified in plasmablasts (PB, Minnich et al., 2016) are shown for comparison. Common (black) and unique (white) peaks are shown for both cell types.

E Densities of Blimp1 binding. Average read density profiles aligned at the center of the Blimp1 peak are shown for the common Blimp peaks of both cell types.

F Blimp1 binding at activated and repressed genes in Prdm1<ihCd2/+> pro-B and pre-B cells. Regulated genes, which are bound by Blimp1 in Prdm1<ihCd2/+> pro-B cells, are shown in black.

G Blimp1 binding and regulation of the commonly repressed target genes Sell (CD62L) and B2gnt5. The Chip-seq data (left) were obtained with Prdm1<ihCd2/+> pro-B cells (this study) and Prdm2<ihCd2/+> Rosa26<−/−>Rosa26<−/−>plasmablasts (PB, Minnich et al., 2016). The RNA-seq data (right) were determined in pro-B and pre-B cells of the Prdm1<ihCd2/+> (red) and wild-type (gray) genotype and in Blimp1-deficient (Prdm1<−/−>, blue) and wild-type (gray) pre-plasmablasts (Pre-PB; Minnich et al., 2016). Cell types expressing Blimp1 (+) are indicated.

H, I Expression of selected Blimp1-activated and Blimp1-repressed genes coding for transcriptional regulators (H) and intracellular signal transducers (I) in Prdm1<ihCd2/+> (red) and wild-type (gray) pre-B cells. Blimp1-bound genes are underlined. The mRNA expression of the indicated genes is shown as mean expression value (TPM) with SEM, based on two different RNA-seq experiments for pre-B cells of each genotype.

The EMBO Journal
Figure 4.
which is also an essential regulator of TFH cell differentiation (Johnston et al, 2009; Nurieva et al, 2009; Yu et al, 2009). In contrast, the hCD22 subset of Prdm1hi/FH− Tfh cells expressed Blimp1, leading to strongly decreased Bcl6 expression (Fig 5H), which suggests that the ectopically expressed Blimp1 protein repressed Bcl6 in this subset, consistent with an antagonistic role of these transcription factors in Tfh cells (Johnston et al, 2009). Hence, these data imply that ectopic Blimp1 expression suppresses Tfh cell differentiation by interfering with the Bcl6-regulated gene expression program, which likely contributes to the loss of GC B cells in Prdm1hi/FH− mice (Johnston et al, 2009; Nurieva et al, 2009; Yu et al, 2009).

Blimp1 strongly enhances plasmablast differentiation of immature and mature B cells

We next directly investigated whether precocious Blimp1 expression may endow immature and mature B cells with an enhanced potential to differentiate to plasmablasts. To this end, we stimulated immature B cells (CD19hiB220IgM+IgD−) from the bone marrow of Prdm1hi/FH− or control wild-type mice with Cpg oligodeoxynucleotides for 60 h, as activation of the Toll-like receptor 9 (TLR9) is known to promote differentiation of immature B cells to IgM-secreting plasmablasts (Azulay-Debby et al, 2007). Interestingly, the immature B cells of Prdm1hi/FH− mice underwent differentiation to plasmablasts (CD138+CD22hi) at a 8.3-fold higher frequency than wild-type immature B cells (Fig 5I). Likewise, lipopolysaccharide (LPS)-mediated TLR4 activation of Prdm1hi/FH− immature B cells resulted in a 3.8-fold increase of plasmablast formation compared to that of wild-type immature B cells (Fig 5I). These findings were confirmed by the presence of Igx-containing antibodies at 8.7- and 18-fold higher levels in the supernatant of the Cpg- and LPS-stimulated Prdm1hi/FH− plasmablasts compared to identically treated wild-type plasmablasts (Fig 5J). Finally, mature FO B cells from the spleen of Prdm1hi/FH− mice also differentiated more efficiently to plasmablasts than wild-type FO B cells after 4 days of stimulation with CpG, LPS or a combination of IL-4, IL-5, and anti-CD40 (Appendix Fig S5H–J). We conclude therefore that precocious Blimp1 expression strongly enhanced the plasmablast differentiation potential of the first IgM− immature B cells in the bone marrow as well as of mature FO B cells in the spleen.

Blimp1 expression in Tfh cells causes the loss of GC B cells in Prdm1hi/FH− mice

As CD8 and CD4 T cells including Tfh cells ectopically expressed Blimp1 in Prdm1hi/FH− mice (Figs 2E and 5H), we next examined whether the B cell phenotype of these mice is B cell-intrinsic or depends on Blimp1-expressing T cells. To this end, we generated mixed bone marrow chimeras by reconstituting lethally irradiated Rag2−/− mice with a mixture of Eβ−/−Prdm1hi/FH− and JhT Prdm1hi/FH− bone marrow at a ratio of 15:1 (Fig 6A). A higher amount of the Prdm1hi/FH− bone marrow was required as ectopic Blimp1 expression in uncommitted lymphoid progenitors (LMPPs, ALPs, BLPs; Fig 2D and Appendix Fig S2C) conferred a competitive disadvantage to the JhT Prdm1hi/FH− progenitors (data not shown). All B cells in the chimeric mice originated from the Eβ−/−Prdm1hi/FH− stem cells, as the homozygous JhT mutation, eliminating the Dj3Q52, Jh, and Eq elements of the IgH locus (Gu et al, 1993), prevented B cell development of the JhT Prdm1hi/FH− progenitors. In contrast, all T cells were derived from JhT Prdm1hi/FH− stem cells, as the Eβ−/−Prdm1hi/FH− progenitors could not contribute to splenic T cell development due to deletion of the Eβ enhancer of the Tcrt locus (Bouvier et al, 1996). For comparison, we generated bone marrow chimeras with a mixture of Eβ−/−Prdm1hi/FH− and JhT Prdm1hi/FH− bone marrow and analyzed all chimeric mice 4 months after transplantation (Fig 6A). As the lower competitive fitness of the Eβ−/−Prdm1hi/FH− progenitors compared to the control Eβ−/−Prdm1hi/FH− progenitors could also contribute to the observed difference in B cell development, we analyzed the trend, but not the absolute fold small sample size.
Figure 5.

A Spleen

WT

Prdm1^{hCd2/+}

<table>
<thead>
<tr>
<th>CD28</th>
<th>CD80</th>
<th>CD86</th>
<th>B220*</th>
<th>Anti-NP IgM</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>9.61</td>
<td>19.3</td>
<td>13.7</td>
<td>10</td>
</tr>
<tr>
<td>Prdm1<sup>hCd2/+</sup></td>
<td>4.91</td>
<td>5.21</td>
<td>4.31</td>
<td>10</td>
</tr>
</tbody>
</table>

B Bone marrow

WT

Prdm1^{hCd2/+}

<table>
<thead>
<tr>
<th>CD28</th>
<th>CD80</th>
<th>CD86</th>
<th>B220*</th>
<th>Anti-NP IgM</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>1.30</td>
<td>2.85</td>
<td>1.2</td>
<td>10</td>
</tr>
<tr>
<td>Prdm1<sup>hCd2/+</sup></td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>10</td>
</tr>
</tbody>
</table>

C Spleen (NP-KLH Day 14)

WT

Prdm1^{hCd2/+}

<table>
<thead>
<tr>
<th>CD28</th>
<th>CD80</th>
<th>CD86</th>
<th>B220*</th>
<th>Anti-NP IgM</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>1.4</td>
<td>1.2</td>
<td>1.2</td>
<td>10</td>
</tr>
<tr>
<td>Prdm1<sup>hCd2/+</sup></td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>10</td>
</tr>
</tbody>
</table>

D NP-specific IgM (NP_{2a})

WT

Prdm1^{hCd2/+}

<table>
<thead>
<tr>
<th>IgM (x10<sup>6</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
</tr>
<tr>
<td>Prdm1<sup>hCd2/+</sup></td>
</tr>
</tbody>
</table>

E Spleen (NP-KLH Day 14)

WT

Prdm1^{hCd2/+}

<table>
<thead>
<tr>
<th>CD19</th>
<th>CD22</th>
<th>CD43</th>
<th>GC B cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>1.4</td>
<td>0.16</td>
<td>1.4</td>
</tr>
<tr>
<td>Prdm1<sup>hCd2/+</sup></td>
<td>1.4</td>
<td>0.16</td>
<td>1.4</td>
</tr>
</tbody>
</table>

F GC B

WT

Prdm1^{hCd2/+}

<table>
<thead>
<tr>
<th>Bcl6</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
</tr>
<tr>
<td>Prdm1<sup>hCd2/+</sup></td>
</tr>
</tbody>
</table>

G Spleen (NP-KLH Day 14)

WT

Prdm1^{hCd2/+}

<table>
<thead>
<tr>
<th>B220*</th>
<th>CD43</th>
<th>PD-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>3.3</td>
<td>0.70</td>
</tr>
<tr>
<td>Prdm1<sup>hCd2/+</sup></td>
<td>3.3</td>
<td>0.70</td>
</tr>
</tbody>
</table>

H T_H cells

WT

Prdm1^{hCd2/+}

<table>
<thead>
<tr>
<th>hCD2</th>
<th>T<sub>H</sub> cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>81.8</td>
</tr>
<tr>
<td>Prdm1<sup>hCd2/+</sup></td>
<td>89.2</td>
</tr>
</tbody>
</table>

I Immature B cells – CpG (60 h)

WT

Prdm1^{hCd2/+}

<table>
<thead>
<tr>
<th>CD38</th>
<th>CD22</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>1.99</td>
</tr>
<tr>
<td>Prdm1<sup>hCd2/+</sup></td>
<td>2.52</td>
</tr>
</tbody>
</table>

J Immature B cells

WT

Prdm1^{hCd2/+}

<table>
<thead>
<tr>
<th>CD138 cells (x10<sup>6</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
</tr>
<tr>
<td>Prdm1<sup>hCd2/+</sup></td>
</tr>
</tbody>
</table>
Prdm1 subsets were reduced in the bone marrow and spleen of Eβ−/− mice compared to the control Eβ+−/− mice (Fig 6B and C), plasma cells were slightly increased in both lymphoid organs of the Eβ−/− Prdm1+/- chimeric mice (Fig 6D). A similar B cell phenotype was observed by comparing non-chimeric Eβ−/− Prdm1+/- chimeric mice with control Eβ−/− Prdm1+/- mice (Appendix Fig S6A-D). Together, these data indicate that decreased B cell development and increased plasma cell differentiation are a B cell-intrinsic property of the Prdm1+/- mouse. However, GC B cells were the exception, as they were present at similar numbers in the spleen of Eβ−/− Prdm1+/- and control Eβ−/− Prdm1+/- chimeric mice (Fig 6E) in marked contrast to the loss of GC B cells in Prdm1+/- mice (Fig 5E). Since the splenic CD4 T cells in Eβ−/− Prdm1+/- chimeric mice did not express hCD2 as expected (Fig 6F), we conclude that the ectopic expression of Blimp1 in T cells interfered with the development of GC B cells possibly due to the observed decrease of functional Thy1 cells in Prdm1+/- mice.

Precocious Blimp1 expression generates an autoimmune disease with progressing age

Given the identification of PRDM1 as a susceptibility gene for human SLE and RA (Gateva et al, 2009; Raychaudhuri et al, 2009; Zhou et al, 2011), we next investigated whether Prdm1+/- mice
develop an autoimmune phenotype with progressing age. Autoimmune diseases, such as SLE, are characterized by circulating autoantibodies that recognize double-stranded (ds) DNA, nuclear proteins [such as SSA (Ro-52) and SSB (La)], and mitochondrial cardiolipin (Suurmond & Diamond, 2015). Hence, we compared, by ELISA, the serum titers of anti-dsDNA, anti-cardiolipin IgG, SSA (Ro-52), and SSB (La) in the serum of Prdm1ihCd2/+ mice with those of the Fasl−/− mouse, a known model of severe systemic autoimmune disease (Takahashi et al., 1994). The levels of IgM antibodies recognizing dsDNA, cardiolipin, SSA (Ro-52), and SSB (La) were already increased at 2 and 4 months in Prdm1ihCd2/+ mice compared to wild-type mice (Appendix Fig S7A), and elevated titers of the corresponding IgG antibodies were observed at 4 and 12 months in Prdm1ihCd2/+ mice, although they did not reach the high level of the respective IgG antibodies measured in the serum of Fasl−/− mice (Fig 7A). Moreover, anti-nuclear antibodies (ANA) of the IgG isotype could readily be detected in the serum of eight out of 22 Prdm1ihCd2/+ mice at the age of 12 months, whereas these autoantibodies were rarely found in the serum of wild-type mice at this age (Fig 7B).

As a consequence, autoreactive immature B cells may differentiate to plasmablasts prior to their elimination by central tolerance mechanisms (receptor editing or clonal deletion; Nemazee, 2003; Tellier et al., 2007), and autoreactive mature B cells may escape their anergic state, imposed by anergy-induced BCR desensitization (peripheral tolerance; Kallies et al., 2007; Tellier et al., 2016). Here, we discovered that the mouse Prdm1 gene was partially activated at the chromatin and transcription level already in the earliest committed pro-B cells, although mature Prdm1 mRNA did not accumulate during B cell development due to posttranscriptional regulation. By analyzing a mouse model that facilitated ectopic Blimp1 protein expression throughout B lymphopoiesis, we could demonstrate that Blimp1 impaired B cell development by interfering with the B cell gene expression program, while leading to increased plasma cell differentiation. With progressive aging, these mice developed an autoimmune disease characterized by the appearance of autoantibodies and a moderate form of glomerulonephritis. These data therefore suggest that mutations in the Prdm1 locus that lead to premature expression of the Blimp1 protein in developing B cells may cause autoimmune diseases such as SLE and RA.

While the expression of key lineage-specific regulators, such as the B cell commitment factor Pax5, is controlled at the transcriptional level (Decker et al., 2009), we made the surprising observation that the Prdm1 locus was already accessible at the chromatin level.

Discussion

The human PRDM1 (Blimp1) locus has been identified as a susceptibility gene for development of the autoimmune diseases systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA; Gateva et al., 2009; Raychaudhuri et al., 2009; Zhou et al., 2011). In the B cell lineage, Blimp1 normally acts as an essential regulator of plasma cell development and function (Shapiro-Shelef et al., 2003; Kallies et al., 2007; Tellier et al., 2016). Here, we discovered that the mouse Prdm1 gene was partially activated at the chromatin and transcription level already in the earliest committed pro-B cells, although mature Prdm1 mRNA did not accumulate during B cell development due to posttranscriptional regulation. By analyzing a mouse model that facilitated ectopic Blimp1 protein expression throughout B lymphopoiesis, we could demonstrate that Blimp1 impaired B cell development by interfering with the B cell gene expression program, while leading to increased plasma cell differentiation. With progressive aging, these mice developed an autoimmune disease characterized by the appearance of autoantibodies and a moderate form of glomerulonephritis. These data therefore suggest that mutations in the Prdm1 locus that lead to premature expression of the Blimp1 protein in developing B cells may cause autoimmune diseases such as SLE and RA.
Blimp1 expression in B cells causes autoimmunity

Figure 7.

A

anti-dsDNA IgG

anti-cardiolipin IgG

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

IgG (AU)

Male Female Male Female Male Female Male Female

2 months 4 months 12 months

anti-SSA (Ro-52) IgG

anti-SSB (La) IgG

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

IgG (AU)

Male Female Male Female Male Female Male Female

2 months 4 months 12 months

B

WT Prdm1\(^{hCd2/+}\) Prdm1\(^{hCd2/+}\)

Fast\(^{gld/gld}\)

Male Female Male Female Male Female Male Female

\(\text{ANA-positive} \quad \text{ANA-negative} \)

C

Score 1 – minimal

Score 2 – mild

Score 3 – moderate

Score 4 – severe

Pathology score

Male Female

2 months 4 months 12 months

D

Precocious Blimp1 expression → Premature plasmablast differentiation → Increased autoreactive plasma cells

Pro-B → Pre-B → Immature B → Mature B → Activated B → Plasma cells

WT Pro-B → Pre-B → Immature B → Mature B → Activated B → Plasma cells

Central tolerance Peripheral tolerance
level and was transcriptionally active in early B cell development long before the onset of plasmablast differentiation. Nascent Prdm1 transcripts were, however, present at a 100-fold lower level in wild-type pro-B cells compared to the fully activated state in wild-type plasmablasts (Fig 2C). Despite transcriptional activity, mature Prdm1 mRNA did not accumulate in early B cell development possibly due to stringent posttranscriptional control. Low expression of Blimp1 mRNA was reported only for peritoneal B-1 and splenic MZ B cells (Fairfax et al., 2007), suggesting that the posttranscriptional control mechanism may operate less stringently in these two B cell types. Posttranscriptional regulation is often mediated by micro-RNAs or RNA-binding proteins that interact with microRNA targets or AU-rich elements in the 3’ UTR of mRNAs, thereby inhibiting translation and/or inducing mRNA decay (Pasquinelli, 2012; Turner et al., 2014). Although two microRNAs (miR-30b,d,e and miR-125b) and the RNA-binding protein ZF₃S6L1 have been implicated in the posttranscriptional control of Prdm1 mRNA (Gururajan et al., 2010; Nasir et al., 2012; Parlatò et al., 2013; Kassambura et al., 2017), Prdm1 mRNA and Blimp1 protein expression did not increase upon deletion of 90% of the Prdm1 3’ UTR sequences in developing B cells of Prdm1⁺⁺/U(90) mice. These data suggest that micro-RNAs and RNA-binding proteins are either not involved in the posttranscriptional control of Prdm1 mRNA or mediate their effect through the residual consensus AU-rich element and microRNA-binding site, which are still present in the Prdm1⁺⁺/U(90) allele.

By inserting the MoMLV enhancer between the stop codon and 3’ UTR of the Prdm1⁺⁺/+ allele, we created an ideal mouse model for studying the effect of ectopic Blimp1 expression in B cells, as Blimp1 expression was high enough to observe a B cell developmental defect in heterozygous Blimp1 expression was high enough to observe a B cell developmental defect in heterozygous Blimp1/⁺⁺/+ mice, while a 2-fold higher level of Blimp1 protein already eliminated all B cells in homozygous Blimp1⁻⁻/⁻⁻/+ mice. B cell subsets from the pre-B cell stage onwards were reduced in Prdm1⁺⁺/+/+ mice largely due to increased apoptosis. This finding is consistent with a previous report demonstrating that ectopic Blimp1 expression in established immature and mature B cell lineages activates a strong apoptotic response (Messika et al., 1998). The observed cell death is likely caused by the strong interference of Blimp1 with the normal B cell gene expression program by activating and repressing many genes in pro-B and pre-B cells of Prdm1⁺⁺/+/+ mice. Unexpectedly, Blimp1 bound only to a small fraction of the Blimp1-regulated genes in pro-B and pre-B cells, suggesting that Blimp1 predominantly regulated gene expression in early B cells in an indirect manner in marked contrast to its significantly higher occupancy at regulated genes in terminally differentiated plasmablasts (Minnich et al., 2016). Blimp1 deregulated the expression of many transcription factors including those encoded by the directly repressed target genes Spib, Hhex, Aff3, Ir2hp2, and Parx5, which together likely mediate the indirect effects of Blimp1 in Prdm1⁺⁺/+/+ B cells. In addition to transcription factors, Blimp1 deregulated the expression of multiple cell surface receptors and intracellular signal transducers, suggesting that ectopic Blimp1 interfered with normal signaling in B cells.

GC B cells were strongly reduced in Prdm1⁺⁺/+/+ mice, although the few residual GC B cells did not express hCD2 (Blimp1) and showed normal expression of the essential regulator Bc6. Tfh cells, which provide T cell help for GC B cell development (Vinuesa et al., 2016), were also reduced in immunized Prdm1⁺⁺/+/+ mice. However, these Tfh cells expressed hCD2 (Blimp1) and exhibited low Bc6 expression, as Blimp1 is known to repress Bc6 in Tfh cells (Johnston et al., 2009). Consequently, the loss of GC B cells in Prdm1⁺⁺/+/+ mice was not a B cell-intrinsic phenotype, as the presence of “wild-type” Tfh cells efficiently supported the differentiation of Prdm1⁺⁺/+/+ GC B cells in mixed bone marrow chimeras.

A prominent B cell-intrinsic feature of ectopic Blimp1 expression was the strong increase in plasma cells of extral follicular origin, which was in stark contrast to the reduced B cell development and almost complete absence of GC B cells in Prdm1⁻⁻/⁻⁻/+ mice. Notably, immature and mature B cells of the Prdm1⁻⁻/⁻⁻/+ genotype rapidly differentiated in vitro to plasmablasts in response to TLR signaling, which strongly suggests that precocious Blimp1 expression in Prdm1⁺⁺/+/+ B cells led to increased plasma cell numbers by promoting premature plasmablast differentiation of B cells (Fig 7D). In this context, it is interesting to note that the lowly Blimp1-expressing B-1 and MZ B cells of wild-type mice also undergo efficient plasmablast differentiation in response to TLR signaling (Fairfax et al., 2007; Genestier et al., 2007). Hence, the low Blimp1 expression may also contribute to the enhanced plasmablast differentiation of these wild-type B cell subsets (Fairfax et al., 2007). As a likely consequence of increased plasma cell generation, Prdm1⁺⁺/+/+ mice developed, with progressing age, an autoimmune disease, which was characterized by the appearance of autoantibodies and a moderate form of glomerulonephritis. Based on the autoimmune phenotype of this mouse model, we hypothesize that human PRDM1 mutations, which may result in premature Blimp1 expression in immature and mature B cells, could cause a predisposition for the development of autoimmune diseases such as SLE and RA. This predisposition could be achieved by increasing the PRDM1 transcription rate in B cells through mutation of its regulatory elements, by stabilizing the PRDM1 mRNA through inactivation of its posttranscriptional regulation or by stabilizing the Blimp1 protein by mutations that prevent polyubiquitination and subsequent degradation of Blimp1 (Yang et al., 2014).

The majority (55–75%) of early immature B cells express autoreactive BCRs as a consequence of the vast antibody diversity generated by V(D)J recombination (Wardemann et al., 2003). A large fraction of the immature B cells with autoreactive BCRs are eliminated in the bone marrow by central tolerance mechanisms involving receptor editing, apoptotic deletion, or AID-mediated elimination (Nemazee, 2017; Cantaert et al., 2015; Fig 7D). Although Blimp1 represses Aicda (AID) transcription in plasma cells (Minnich et al., 2016), ectopically expressed Blimp1 in immature B cells did not repress Aicda expression (data not shown), suggesting that the AID-mediated elimination of autoreactive immature B cells (Cantaert et al., 2015) was not affected in Prdm1⁺⁺/+/+ mice. Self-reactive immature B cells in the bone marrow are, however, known to be responsive to CpG stimulation and thus have the potential to circumvent negative selection by prematurely differentiating to plasmablasts that secrete autoantibodies (Azulay-Debby et al., 2007). While peripheral tolerance silences mature B cells with autoreactive BCRs through anergy induction (Theofilopoulos et al., 2017), it is conceivable that precocious Blimp1 expression may promote TLR-mediated differentiation of anergic mature B cells to autoreactive plasma cells in parent text.

© 2018 The Authors

The EMBO Journal e1000110 | 2018 15 of 19
Prdm1^{−/−} mice (Fig 7D). Ectopic Blimp1 expression in immature and mature B cells can enhance premature plasma cell differentiation in two ways (Fig 7D). First, the enhanced apoptosis of Blimp1-expressing B cells likely results in an increase of cellular debris, apoptotic blebs, and extruded nuclei, which exposes self-antigens to polyreactive BCRs that, upon endocytosis, present these self-antigens to endosomal TLRs (TLR3, TLR7, TLR8, TLR9), thus resulting in TLR activation. Second, ectopic Blimp1 expression partially activates the plasma cell program in developing B cells by interfering with the intrinsic B cell gene expression pattern and by regulating plasmablast-specific genes, which may further accelerate plasmablast differentiation, thus allowing autoreactive immature B cells to evade central tolerance and anergic B cells to escape anergy control by differentiating to plasma cells. In summary, the Prdm1^{−/−} mouse model of ectopic Blimp1 expression has identified a novel mechanism that can explain how Blimp1 as a risk factor contributes to the development of autoimmune disease.

Materials and Methods

Detailed methods can be found in the Appendix Supplementary Methods available online.

Mice

The following mice were maintained on the C57BL/6 genetic background: Prdm1^{129Gsd/129Gsd} (Minnich et al., 2016), Prdm1^{Gfp/+} (Kallies et al., 2004), Eβ−/− (Bouvier et al., 1996), Jβ2 (Gau et al., 1993), Rosa26^{Bla/Bl} (Driegen et al., 2005), Pax5^{Gfp/+} (Fuxa & Busslinger, 2007), Rag2−/− (Shinkai et al., 1992), Fas^{Bcl2/+} (Takahashi et al., 1994), and transgenic Vav-Bcl2 (Ogilvy et al., 1999) mice. All animal experiments were carried out according to valid project licenses, which were approved and regularly controlled by the Austrian Veterinary Authorities.

Generation of Prdm1^{−/−}V(D)/J{U(90)} mice

The 3′ UTR in the endogenous Prdm1 locus was deleted by CRISPR/Cas9-mediated genome editing by co-injecting mouse zygotes with Cas9 mRNA and two specific sgRNAs (Table EV3). PCR genotyping with the primers shown in Table EV3 yielded a 399-bp and 218-bp PCR fragment for the wild-type and the Prdm1^{AςU(90)/+} allele, respectively.

Antibodies

The following monoclonal antibodies were used for flow cytometry: B220, CD45R (RA3-6B2), CD3c (145-2C11), CD4 (GK1.5), CD5 (53-7.3), CD8α (53-6.7), CD19/Mac1 (M1/70), CD21 (7G6), CD22 (Cy34.1), CD23 (B384), CD25 (PC61), CD28 (37.51), CD40 (3/23), CD44 (IM7), CD49b (DX5), CD62L (MEL-14), CD69 (H1.2F3), CD80 (16-10A1), CD86 (GL1), CD90.2/Yth1.2 (30-H12), CD95/Fas (Jo2), CD117/Kit (2B8), CD127/IL7Rα (A7834), CD135/Fli3 (A2F10), CD138 (281-2), CD279/PD-1 (J43), CXCR5 (2G8), F4/80 (CI:A3-1), CL2 (GL7), Gr1 (RB6-8C5), IgD (11-26.2a), IgM (11/2), IgY6c (6C3), Ly6D (49-H4), MHCII (MS-114), NK1.1 (PK136), Sca-1 (D7), TCRβ (HS5-597), TCRγ6 (GL3), and human CD2 (RPA-2.10).

Generation of bone marrow chimeras

For the generation of mixed bone marrow chimeras, donor-derived bone marrow cells of the indicated genotypes (Fig 6A) were stained with PE-conjugated, lineage-specific antibodies (CD19, CD4, CD8α, TCRβ, TCRγδ, NK1.1, and CD49b) followed by magnetic depletion of the PE-labeled cells using MACS cell separation (Miltenyi Biotec). The donor cells, mixed at a 1:15 ratio (Jβ2T : Eβ−/− or Eβ−/−Prdm1^{−/−}/+), were intravenously injected into lethally irradiated (1,000 rads) Rag2−/− recipients.

Injection of apoptotic thymocytes

To generate apoptotic cells, thymocytes of 6- to 8-week-old C56BL/6 mice were cultured for 6 h at 22°C in IMDM medium containing 10% FCS (GE Healthcare; A15-101), as described (Duhlin et al., 2016). Approximately 1 × 10^7 apoptotic thymocytes were intravenously injected into each mouse.

Immunization, ELISPOT, and ELISA analyses

The immune response to a T cell-dependent antigen was studied by intraperitoneal injection of 100 μg of NP-KLH (Biosearch Technologies) in alum. The frequencies of NP-specific IgM antibody-secreting cells (ASCs) were determined in the spleen by enzyme-linked immunosorbent assay (ELISPOT) assay, as described (Smith et al., 1997).

The serum titer of NP-specific IgM, IgG1, and IgG2b antibodies was determined by enzyme-linked immunosorbent assay (ELISA) using ELISA plates (Sigma-Aldrich), which were coated with 25 μg/ml of NP-BSA or NP26-BSA to capture high-affinity IgG1 or total NP-specific IgM, IgG1, and IgG2b antibodies, respectively.

ELISA measurements of autoantibodies

ELISA plates coated with mouse liver DNA were incubated with mouse serum for 2 h at 22°C. Anti-DNA-specific antibodies were detected by incubation with horseradish peroxidase-coupled goat anti-mouse IgG or goat anti-mouse IgM antibodies (SouthernBiotech) in the presence of the TMB substrate (Biolegend). For measuring anti-cardiolipin antibodies, ELISA plates were coated with cardiolipin (Sigma-Aldrich) overnight. Serum was added after blocking, and antigen-reactive IgG and IgM were measured with alkaline phosphate- or horseradish peroxidase-conjugated anti-mouse antibodies (SouthernBiotech). Antibodies against SSA (Ro-52) and SSB (La) were detected by incubation with horseradish peroxidase-coupled goat anti-mouse IgG or goat anti-mouse IgM antibodies (SouthernBiotech). Antibodies against SSA (Ro-52) and SSB (La) were measured using commercial kits (all from Signosis Inc) following the manufacturer’s instruction.

Indirect immunofluorescence assay using HEp-2 slides

Diluted mouse serum (1:100 in PBS) was incubated on HEp-2 slides (Ogventech) for 30 min at 22°C, before the slides were washed twice for 5 min with PBS. For detection of mouse IgM or IgG, the slides were incubated for 30 min at 22°C with an Alexa488-conjugated goat anti-mouse IgM antibody or an Alexa488-conjugated goat anti-mouse IgG (H + L) antibody (both from Thermo Fisher Scientific)
as a secondary antibody. Following two washing steps, DAPI-containing mounting medium (Life Technologies) was added together with a cover slip. Images were acquired with a Zeiss Axio Imager 2 microscope and were analyzed with the Fiji software.

ChIP-seq analysis of Blimp1 binding

Chromatin of 1 × 10⁸ in vitro cultured pro-B cells from Prdm1ΔBDG2+/− mice was prepared using a lysis buffer containing 0.25% SDS and was then subjected to ChIP with anti-V5 agarose beads (Sigma-Aldrich), as described (Wöchner et al., 2016). About 1–5 ng of ChIP-precipitated DNA was used for library preparation and Illumina deep sequencing (Table EV4).

RNA-sequencing

RNA from ex vivo sorted B cells was isolated with the RNeasy Plus Mini Kit (Qiagen). mRNA was obtained by two rounds of poly(A) selection and used for library preparation and Illumina deep sequencing as described (Minnich et al., 2016).

Bioinformatic analysis of RNA- and ChIP-seq data

The bioinformatic analysis of RNA- and ChIP-seq data was performed as described in detail (Minnich et al., 2016).

Statistical analysis

Statistical analysis was performed with the GraphPad Prism 7 software. The two-tailed Student’s t-test was used to assess the statistical significance of differences between two experimental groups except for ELISA data, which were analyzed using the Mann–Whitney U-test.

Accession numbers

RNA-seq, ChIP-seq, and GRO-seq data (Table EV4), which are first reported in this study, are available at the Gene Expression Omnibus (GEO) repository under the accession numbers GSE111692. Previously published ATAC-seq, ChIP-seq, and RNA-seq datasets are available under the GEO accession numbers indicated in Table EV4.

Expanded View for this article is available online.

Acknowledgements

We thank G. Schmauß and M. Weninger for FACS sorting, A. Sommer’s team at the Vienna Biocenter Support Facilities GmbH (VBCF) for Illumina sequencing, and T. Engelmeier at VBCF for histological service. This research was supported by Boehringer Ingelheim, the European Community’s Seventh Framework Program (European Research Council Advanced Grant 201150-LymphoControl), and the Austrian Industrial Research Promotion Agency (Headquarter Grant FFG-852936).

Author contributions

PB performed most experiments; MW performed the ELISPOT, ELISA, BrdU incorporation, and cell injection experiments; MM generated the Prdm1ΔG2D allele and discovered the Blimp1 overexpression phenotype of the Prdm1ΔG2D mice; HT generated the GRO-seq data; MG measured the anti-cardiolipin, anti-SSA, and anti-SSB antibody titers; MCiK provided advice for analysis of the autoimmune phenotype; AK evaluated the pathology of the kidneys; MF and MJ performed the bioinformatic analysis of all RNA-seq and ChIP-seq data, respectively; MB and PB planned the project and wrote the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Blimp1 expression in B cells causes autoimmunity
The EMBO Journal, *e100010*, 2018

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Appendix

Table of contents
1. Appendix Supplementary Methods
2. Appendix Figures
3. Appendix Supplementary References

1. Appendix Supplementary Methods

Mice
The following mice were maintained on the C57BL/6 genetic background: Prdm1^{ihCd2/iCd2} (Minnich et al., 2016), Prdm1^{Gfp/+} (Kallies et al., 2004), Eβ−/− (Bouvier et al., 1996), JγT (Gu et al., 1993), Rosa26^{BirA/BirA} (Driegen et al., 2005), Pax5^{Gfp/iGfp} (Fuxa and Busslinger, 2007), Rag2−/− (Shinkai et al., 1992), Fast^{gld/gld} (Takahashi et al., 1994) and transgenic Vav-Bcl2 (Ogilvy et al., 1999) mice. All animal experiments were carried out according to valid project licenses, which were approved and regularly controlled by the Austrian Veterinary Authorities.

Generation of Prdm1^{A3′U(90)/A3′U(90)} mice
The 3′UTR in the endogenous Prdm1 locus was deleted by CRISPR/Cas9-mediated genome editing (Yang et al., 2013). For this, Cas9 mRNA was co-injected with two specific sgRNAs (linked to the scaffold tracrRNA) into mouse zygotes (C57BL/6 x CBA), as previously described (Yang et al., 2013). The sgRNAs and PCR genotyping primers are shown in Table EV3. The PCR reaction amplified a 399-bp and 218-bp fragment for the wild-type and the 3′UTR-deleted allele, respectively. The Prdm1^{A3′U(90)/+} allele was backcrossed at least 5 times to the C57BL/6 genetic background.

Antibodies
The following monoclonal antibodies were used for flow cytometry: B220/CD45R (RA3-6B2), CD3ε (145-2C11), CD4 (GK1.5), CD5 (53-7.3), CD8α (53-6.7), CD11b/Mac1 (M1/70), CD19 (1D3), CD21 (7G6), CD22 (Cy34.1), CD23 (B3B4), CD25 (PC61), CD28 (37.51), CD40 (3/23), CD44 (IM7), CD49b (DX5), CD62L (MEL-14), CD69 (H1.2F3), CD80 (16-10A1), CD86 (GL1), CD90.2/Thy1.2 (30-H12), CD95/Fas (Jo2), CD117/c-Kit (2B8), CD127/IL7Rα (A7R34), CD135/Flt3 (A2F10), CD138 (281-2), CD279/PD-1 (J43), CXCR5 (2G8), F4/80 (Cl:A3-1), GL7 (GL7), Gr1 (RB6-8C5), IgD (11-26c.2a), IgM (II/41), Ly6C (6C3), Ly6D (49-H4), MHCII (M5-114), NK1.1 (PK136), Sca-1 (D7), TCRβ (H57-597), TCRγδ (GL3) and human CD2 (RPA-2.10).

For detection of intracellular proteins by flow cytometry using the Foxp3 staining buffer set (eBioscience; 00-5523-00), the following antibodies were used: Bcl6 (K112-91), Blimp1 (5E7) and cleaved Caspase 3 (5A1E). For immunoblot analysis of nuclear extracts, the following antibodies were used: rat monoclonal antibody (mAb) to Blimp1 (5E7) and mouse mAb to Tbp (3TF1-3G3; Active Motif). The following antibodies were used to detect histone modifications by
Definition of cell types by flow cytometry

Lymphocyte populations were gated as follows: LMPPs (Lin⁻Flt3⁺IL7Rα⁺B220⁻c-Kit⁺Sca-1⁺), ALPs (Lin⁻Flt3⁺IL7Rα⁺B220⁻c-Kit⁻Ly6D⁻), BLPs (Lin⁻Flt3⁺IL7Rα⁺B220⁻c-Kit⁻Ly6D⁺), total B cells (CD19⁺B220⁺), pro-B cells (CD19⁺B220⁺IgM⁻IgD⁻c-Kit⁺CD25⁻), pre-B cells (CD19⁺B220⁺IgM⁺IgD⁻c-Kit⁺CD25⁻), immature B cells (CD19⁺B220⁺IgM⁺IgD⁻), recirculating B cells (CD19⁺B220⁺IgM⁻loIgD⁻), follicular B cells (CD19⁺B220⁺CD21⁺/loCD23⁻), marginal zone B cells (CD19⁺B220⁺CD21^{hi}CD23⁻), germinal center B cells (CD19⁺B220⁺GL7Fas⁻), peritoneal B-1a cells (CD19⁺CD23⁺CD5<sup+</sup>), peritoneal B-1b cells (CD19⁺CD23⁺CD5⁺), peritoneal B-2 cells (CD19⁺CD23⁻CD5⁺), plasmablasts (CD138⁺CD25⁻), plasma cells (Lin⁻B220^{int/−}CD138[−]CD28⁺), DN1 thymocytes (CD4[−]CD8[−]TCRβ[−]CD44[−]CD25[−]), DN2 thymocytes (CD4[−]CD8[−]TCRβ[−]CD44[−]CD25⁺), DN3 thymocytes (CD4[−]CD8[−]TCRβ[−]CD44⁺CD25⁺), DN4 thymocytes (CD4[−]CD8[−]TCRβ⁺CD44[−]CD25[−]), DP thymocytes (CD4[−]CD8[−]), CD4 SP thymocytes (CD4[−]CD8[−]), CD8 SP thymocytes (CD4[−]CD8[−]), splenic naïve CD4⁺T cells (TCRβ[−]Thy1.2[−]CD4⁺CD8[−]CD62L[−]CD44⁺), splenic naïve CD8⁺T cells (TCRβ[−]Thy1.2⁺CD4[−]CD8[−]CD62L[−]CD44⁺), T_{FH} cells (CXCR5⁺PD-1⁺CD4⁺B220[−]), NK cells (TCRβ[−]CD49b⁺), and granulocytes (Gr1⁺Mac1⁺). The lineage cocktails contained the following antibodies: anti-TCRβ, anti-CD3, anti-Gr1, anti-CD11b, anti-NK1.1, anti-CD19 and anti-Ly6C for MPPs, ALPs and BLPs, and anti-CD4, anti-CD8, anti-F4/80 and anti-CD21 for plasma cells. Cell populations for in vitro stimulation of CD4⁺ B cells were gated as follows: activated B cells (CD22[−]CD138[−]), pre-plasmablast (CD22[−]CD138[−]) and plasmablast (CD22[−]CD138[−]). Flow cytometry experiments and FACS sorting were performed on LSR Fortessa (BD Biosciences) and FACSARIA III (BD Biosciences) machines, respectively. Flowjo software (Treestar) was used for data analysis.

Generation of bone marrow chimeras

For the generation of mixed bone marrow chimeras, donor-derived bone marrow cells of the indicated genotypes (Fig 6) were stained with anti-CD19, anti-CD4, anti-CD8α, anti-TCRβ, anti-TCRγδ, anti-NK1.1 and anti-CD49b antibodies conjugated to PE followed by magnetic depletion of the PE-labeled cells using MACS cell separation (Miltenyi Biotec). The donor cells were mixed at a 1:15 ratio (Jb1T; Eβ⁺/ or Eβ[−] / Prdm1^{−/−} Cd2[−] /[−]) and transferred intravenously into lethally irradiated (1,000 rads) Rag2^{−/−} recipients. The mice were analyzed 4 months after bone marrow reconstitution.

Injection of apoptotic thymocytes

To generate apoptotic cells, thymocytes of 6-8-week-old C56BL/6 mice were cultured for 6 h at 22 °C in IMDM medium containing 10% FCS (GE Healthcare; A15-101), 1 mM glutamine, 50 µM β-mercaptoethanol and 1 µM dexamethasone (Sigma-Aldrich), as described (Duhlin et al., 2016). Staining with annexin V and propidium iodide confirmed apoptosis in ~70% of the ChIP-qPCR: H3K4me1 (rabbit polyclonal Ab; Abcam; ab8895) and H3K27ac (rabbit polyclonal Ab; Abcam; ab4729).
thymocytes. Approximately 1×10^7 apoptotic thymocytes were intravenously injected into each mouse.

Apoptosis assays

Ex vivo apoptosis of pro-B and pre-B cells was assessed by flow cytometry by using the Violet Ratiometric Membrane Asymmetry Probe/Dead Cell Apoptosis Kit (Thermo Fisher Scientific) according to the manufacturer's instructions. Alternatively, ex vivo apoptosis was assessed by intracellular staining with an anti-cleaved Caspase 3 antibody (5A1E; Cell Signaling Technology).

BrdU labeling of B cells

$Prdm1^{ihCd2/+}$ and $Prdm1^{+/+}$ mice at the age of 3 months were intraperitoneally injected with 100 µl of 10 mg/ml BrdU (in PBS) at day 0. At the same time, BrdU was added at a concentration of 1 mg/ml to the drinking water, and the BrdU-containing drinking water, which was protected from light, was exchanged every day. At day 10, the mice were either sacrificed or received normal drinking water (without BrdU) for the next 15 days. At day 10 or 25, the BrdU incorporation into immature B and FO B cells of the spleen was analyzed by flow cytometry. Incorporated BrdU was detected by intracellular staining with an anti-BrdU antibody using the APC BrdU Flow kit (BD Pharmingen).

Intracellular staining

Intracellular staining with anti-Blimp1 (5E7), anti-Bcl6 (K112-91) and anti-cleaved Caspase 3 (5A1E) antibodies was performed after fixation and permeabilization of lymphocytes with the Foxp3 staining buffer set (eBioscience).

In vitro culture of pro-B cells

$Prdm1^{ihCd2/+}$ and wild-type pro-B cells were cultured on OP9 stromal cells in IMDM medium containing IL-7 as described (Nutt et al., 1997).

In vitro B cell stimulation experiments

Immature B cells (CD19\(^+\)B220\(^+\)IgM\(^+\)IgD\(^-\)) were sorted by flow cytometry from the bone marrow, and mature FO B cells were isolated from the spleen by immunomagnetic depletion of CD43-expressing cells using MACS cell separation (Miltenyi Biotec). Mature cells were resuspended in stimulation medium (IMDM medium supplemented with 10% heat-inactivated FCS (GE Healthcare; A15-101), 1 mM glutamine and 50 µM β-mercaptoethanol) and were seeded at a density of 2×10^6 cells in 4 ml of stimulation medium into one well of a 6-well plate. Immature B cells were seeded at a density of 1.5×10^5 cells in 750 µl of stimulation medium (RPMI 1640 instead of IMDM plus further addition of 1 mM sodium pyruvate and 10 mM Hepes) into one well of a 24-well plate. The stimulation medium additionally contained the following reagents: 25 µg/ml LPS (L4130; Sigma-Aldrich) for LPS stimulation; 3 µM CpG (ODN 1826, InvivoGen) for CpG stimulation; 20 ng/ml IL-4 (made in-house), 10 ng/ml IL-5 (405-ML, R&D Systems) and 2 µg/ml anti-CD40 antibody (HM40-3, eBioscience) for IL-4, IL-5 plus anti-CD40 stimulation. At
60 hours (immature B cells) or 4 days (mature B cells) of stimulation, the relative frequency of CD138⁺CD22^{lo} plasmablasts was determined by flow cytometric analysis.

Analysis of somatic hypermutation
Following isolation of genomic DNA from sorted splenic plasma cells of non-immunized 4-month-old mice, the intronic region downstream of the J_{H4} segment of the Igh locus was PCR-amplified with the PfuTurbo DNA polymerase (Agilent) using the PfuUltra II hotstart master mix (Agilent) and primers described in Table EV3. The 564-bp PCR fragments were A-tailed by Taq polymerase (made in-house) and directly cloned using the pGEM-T Easy Vector System (Promega), followed by transformation of the E. coli strain DH5α. The inserted DNA of at least 85 clones per genotype was analyzed by Sanger sequencing, and mutations were identified by comparison with the wild-type downstream J_{H4} sequence.

Nuclear extract preparation and immunoblot analysis
Nuclear extracts of short-term cultured pro-B cells were prepared as described (Minnich et al., 2016). The protein concentration of the nuclear extract was determined by Bradford assay (BioRad). The proteins of the nuclear extract were denatured in 2× SDS sample buffer, boiled, separated by SDS-PAGE and analyzed by immunoblot analysis.

Immunization, ELISPOT and ELISA analyses
The immune response to a T cell-dependent antigen was studied by intraperitoneal injection of 100 µg of 4-hydroxy-3-nitrophenylacetyl-conjugated keyhole limpet hemocyanin (NP-KLH; Biosearch Technologies) in alum. The frequencies of NP-specific IgM antibody-secreting cells (ASCs) were determined in the spleen by enzyme-linked immunospot (ELISPOT) assay, as described (Smith et al., 1997). NP₂₄-BSA-coated plates were used for capturing total anti-NP-IgM antibodies secreted by individual cells. ASCs were incubated for 6 h at 37 ºC and 5% CO₂, and the resulting spots were visualized with a goat anti-mouse IgM antibody conjugated to alkaline phosphatase (SouthernBiotech), and color was developed by the addition of BCIP/NBT Plus solution (SouthernBiotech). After extensive washing, the spots were counted with an AID ELISPOT reader system (Autoimmun Diagnostika).

The serum titer of NP-specific IgM, IgG1 and IgG2b antibodies was determined by enzyme-linked immunosorbant assay (ELISA) (Smith et al., 1997) by using ELISA plates (Sigma-Aldrich), which were coated with 25 µg/ml of NP₇-BSA or NP₂₄-BSA to capture high-affinity IgG1 or total NP-specific IgM, IgG1 and IgG2b antibodies, respectively. The serum concentration of NP-specific IgG1 was determined relative to that of a standard anti-NP IgG1 antibody (hybridoma SSX2.1).

ELISA measurements of autoantibodies
ELISA plates (Sigma-Aldrich), which were coated with mouse liver DNA and then blocked with 1% BSA, were incubated with mouse serum for 2 h at 22 ºC. Anti-DNA-specific antibodies were detected by incubation with horseradish peroxidase-conjugated goat anti-mouse IgG or goat anti-
mouse IgM antibodies (both from SouthernBiotech) in the presence of the TMB substrate (Biolegend). The absorbance was measured at 650 nm using an Epoch Microplate Spectrophotometer (BioTek Instruments). Antibodies against cardiolipin were measured as described (Wermeling et al., 2010). Briefly, ELISA plates were coated with cardiolipin (Sigma-Aldrich) overnight. Serum was added after blocking, and antigen-reactive IgG and IgM were measured with alkaline phosphate- or horseradish peroxidase-conjugated anti-mouse antibodies (SouthernBiotech). Antibodies against SSA (Ro-52) and SSB (La) were measured using commercial kits (all from Signosis Inc) following the manufacturer’s instruction. All samples were corrected for background binding.

Indirect immunofluorescence assay using HEp-2 slides

Diluted mouse serum (1:100 in PBS) was incubated on HEp-2 slides (Orgentech) for 30 min in the dark at 22 ºC using a humidity chamber. Subsequently, the slides were rinsed once with a squirt bottle and washed twice for 5 min with PBS. For detection of mouse IgM or IgG, the slides were incubated for 30 min in the dark at 22 ºC in a humidity chamber with an Alexa488-conjugated goat anti-mouse IgM antibody or an Alexa488-conjugated goat anti-mouse IgG (H+L) antibody (both from Thermo Fisher Scientific and diluted in PBS) as a secondary antibody. Following two washing steps, DAPI-containing mounting medium (Life Technologies) was added, and images were acquired with a Zeiss Axio Imager 2 microscope and were analyzed with the Fiji software.

Detection of IgG immune complexes

IgG immune complexes were detected on paraformaldehyde-fixed cryosections of kidneys by staining with an Alexa488-conjugated goat anti-mouse IgG (H+L) antibody (Thermo Fisher Scientific) followed by addition of DAPI-containing mounting medium (Life Technologies). The abundance of IgG immune complexes was quantified by determining the mean fluorescence intensity (MFI) of at least 12 individual glomeruli for each kidney. Image acquisition was performed with a LSM710 (Zeiss) confocal microscope, and images were analyzed with the Fiji software.

Histopathological analysis

For histopathological analyses, one kidney from each mouse was isolated, fixed in 4% paraformaldehyde, trimmed, dehydrated and processed with the Logos Tissue processor. Processed kidneys were embedded in paraffin, sectioned at a thickness of 2 µm and stained either with haematoxylin and eosin (H&E) or periodic acid-Schiff (PAS) stains. Stained slides were reviewed by a board-certified pathologist with a Zeiss Axioskop 2 MOT microscope (Carl Zeiss Microscopy) and representative microscopic images were acquired with a SPOT Insight digital camera (SPOT Imaging). From each kidney, 40 glomeruli were individually evaluated based on criteria adapted from the following references (Alperovich et al., 2007; Chowdhary et al., 2015; Weening et al., 2004). Each glomerulus was evaluated for the presence of the following microscopic lesions: active lesions - mesangial hypercellularity, fibrinoid necrosis; endocapillary hypercellularity, capillary basement membrane lesions (including wireloops, reduplication and
focal granular sub- or supra-basement membrane deposits) and intracapillary hyaline thrombi as well as chronic lesions - mesangial sclerosis, mesangial crescents and capsular fibrous adhesions. Light microscopic lesions that were notably evident in kidneys from female Prdm1htCd2/+ mice included capillary basement membrane lesions (focal granular deposits, focal or segmental basement membrane thickening or reduplication) and mesangial sclerosis (expansion of the mesangium with PAS-positive matrix with narrowing of capillary lumina). Intracapillary hyaline thrombi were evident in a few mice as were obsolescent glomeruli. Tubular and interstitial lesions were not assessed, as they were not a prominent feature in any of the kidneys. Histopathologic scores were assigned to each glomerulus, based on the extent of involvement by one or more of the above lesions as follows: score 0 - within normal limits; score 1 - minimal (less than 10%); score 2 - mild, segmental (11% to 30%); score 3 - moderate, segmental (31% to 60%); score 4 - severe, segmental to global (greater than 60%), as documented in Table EV2.

RT-qPCR analysis of nascent transcripts and spliced mRNA
Total RNA was isolated from sorted pro-B cells, pre-B cells and in vitro LPS-stimulated plasmablasts by using the RNeasy Mini kit (Qiagen). Genomic DNA was eliminated by using an eliminator spin column (Qiagen). Reverse transcription was performed by using random hexamer or oligo-dT primers (New England Biolabs) and SuperScript II reverse transcriptase (Life Technologies). Prdm1, Atg5 and Tbp nascent transcripts were analyzed by PCR amplification with primers located in intronic sequences (Table EV3), and the data were normalized to those obtained for nascent Tbp transcripts. The Prdm1 and Tbp mRNAs were analyzed by PCR amplification with primers located in different exons (Table EV3), and the data were normalized to the Tbp mRNA.

GRO-seq analysis
CD19+ pro-B cells from the bone marrow of Rag2−/− mice and CD23+ FO B cell from the spleen of Cd23-Cre Ebf1fl/+ or Cd23-Cre Ebf1fli− mice were isolated by immunomagnetic enrichment using MACS cell separation (Miltenyi Biotec). The nuclei were prepared from approximately 10 million cells by incubation with nuclear preparation buffer (0.30 M sucrose, 10 mM Tris, pH 7.5, 60 mM KCl, 15 mM NaCl, 5 mM MgCl2, 0.1 mM EGTA, 0.1% NP40, 0.15 mM spermine, 0.5 mM spermidine and 2 mM 6AA) for 3 min and were then subjected to nuclear run-on for 5 min at 30 °C using BrUTP-containing NTPs, as described (Core et al., 2008). The reaction was stopped by the addition of TRIzol reagent. The RNA was isolated, fragmented and the nascent transcripts were isolated using anti-BrdU antibody-conjugated agarose beads (Santa Cruz Biotech, sc-32323-ac). The purified nascent RNA was subjected to the small RNA library preparation procedure (Reimão-Pinto et al., 2015) with anti-BrdU antibody-mediated purification following each ligation step.

ChIP-qPCR analysis of histone modifications
Short-term cultured pro-B cells were used for ChIP analysis with an anti-H3K4me1 antibody (rabbit polyclonal; Abcam; ab8895) or an anti-H3K27ac antibody (rabbit polyclonal; Abcam;
Different regions of the Prdm1 locus were analyzed by ChIP-qPCR analysis with specific primers (shown in Table EV3), as described (Minnich et al., 2016).

ChIP-seq analysis of Blimp1 binding

Chromatin of 1×10^8 in vitro cultured pro-B cells from Prdm1ihCd2/+ mice was prepared using a lysis buffer containing 0.25% SDS and was then subjected to ChIP with anti-V5 agarose beads (Sigma-Aldrich), as described (Schebesta et al., 2007). The quantification of precipitated DNA was performed using qPCR, and about 1-5 ng of ChIP-precipitated DNA was used for library preparation and subsequent Illumina deep sequencing (Table EV4).

cDNA preparation for RNA-seq

Total RNA from ex vivo sorted pro-B and pre-B cells was isolated with the RNeasy Plus Mini Kit (Qiagen), and mRNA was purified by two rounds of poly(A) selection with the Dynabeads mRNA purification kit (Invitrogen). The mRNA was fragmented by heating at 94 °C for 3 min in fragmentation buffer. The fragmented mRNA was used as template for first-strand cDNA synthesis with random hexamers and the Superscript Vilo First-Strand Synthesis System (Invitrogen). The second-strand cDNA synthesis was performed with 100 mM dATP, dCTP, dGTP and dUTP in the presence of RNase H, E. coli DNA polymerase I and DNA ligase (Invitrogen). The incorporation of dUTP allowed for specific elimination of the second DNA strand during library preparation, thereby preserving strand specificity (Parkhomchuk et al., 2009).

Library preparation and Illumina Deep Sequencing

About 1-5 ng of cDNA or ChIP-precipitated DNA was used as starting material for the generation of sequencing libraries with the NEBNext Ultra Ligation Module and NEBNext End Repair/dA-Tailing module. DNA fragments of the following sizes were selected: 200–500 bp for ChIP-seq and 150–700 bp for RNA-seq with AMPure XP beads (Beckman Coulter). For strand-specific RNA-seq, the uridines present in one cDNA strand were digested with uracil-N-glycosylase (New England BioLabs) as described (Parkhomchuk et al., 2009), followed by PCR amplification with the KAPA Real Time Amplification kit (KAPA Biosystems). Completed libraries were quantified with the Bioanalyzer dsDNA 1000 assay kit (Agilent) and QPCR NGS Library Quantification kit (Agilent). Cluster generation and sequencing was carried out by using the Illumina HiSeq 2000 system with 50 nucleotides read length according to the manufacturer's guidelines.

Database of RefSeq-annotated genes

The database generation of RefSeq-annotated genes was performed as previously described (Wöhner et al., 2016). To refine the annotation of immunoglobulin genes, the immunoglobulin λ light-chain segments were replaced with their corresponding converted GRCm38.p3 annotations (Ensembl version 79; Yates et al., 2016). The resulting number of genes was 24,732.
Sequence alignment
In case of RNA-seq experiments, reads corresponding to mouse ribosomal RNAs (BK000964.1 and NR046144.1) were removed. The remaining reads were cut down to a read length of 44 nucleotides and aligned to the mouse transcriptome (genome assembly version of July 2007 NCBI37/mm9) using TopHat version 1.4.1 (Trapnell et al., 2009). In case of ChIP-seq, GRO-seq and ATAC-seq experiments, all sequence reads that passed the Illumina quality filtering were considered for alignment after adapter trimming. The remaining reads were aligned to the mouse genome assembly version of July 2007 (NCBI37/mm9), using the Bowtie program versions 0.12.1, 1.0.0 and 2.1.0, respectively (Langmead et al., 2009). For GRO-seq, additional four bases were eliminated after adapter trimming and filtered against the rDNA with Bowtie version 2.1.0 before mouse genome alignment. For ATAC-seq, additional alignment parameters were ‘-sensitive -X 5000’.

Peak calling
Blimp1 peaks were called using the MACS program version 2.1.0 (Zhang et al., 2008) with default parameters and appropriate input control for pro-B and mature B cells [pro-B cells - GSM1145867 (Schwickert et al., 2014); mature B cells - GSM2058441, (Wöhner et al., 2016)] and a genome size of 2.654.911.517 bp (mm9). Peak calling identified 889 Blimp1 peaks in Prdm1^{hCd2/+} pro-B cells and 14,512 Blimp1 peaks in Prdm1^{Bio/Bio} plasmablasts with a P value of < 10^{-5}. These Blimp1 peaks were further filtered for a P value of < 10^{-10}, which resulted in 762 peaks in pro-B cells and 9,320 peaks in plasmablasts.

Peak overlap analysis
The peak overlap analysis was performed with the Multovl program (Aszódi, 2012) by using a minimal overlap length of one bp and allowing for all possible overlaps.

Motif discovery analysis
Sequences +/- 150 bp around the most significant MACS2 summit of the top 300 P value-ranked Blimp1 peaks have been used as input for the MEME-ChIP suite version 4.9.1 (Machanick and Bailey, 2011). The most significant motif was the Blimp1 motif with an E-value of 1.3 x 10^{-379}.

Read density analysis
Read density profiles were calculated using jnomics (I. Tamir, unpublished).

Peak-to-gene assignment
Common and unique Blimp1 targets in Prdm1^{hCd2/+} pro-B cells and Prdm1^{Bio/Bio} plasmablasts were identified by peak-to-gene assignment as described (Revilla-i-Domingo et al., 2012). Peaks were assigned to genes in a stepwise manner by prioritizing genes containing peaks in their promoter and/or gene body. For this, peaks overlapping with the promoter (-2.5 kb to +2.5 kb relative to TSS) or gene body (+2.5 kb to TES) were first assigned to the corresponding gene. Other peaks within a specified region of 50 kb upstream of the TSS or downstream of the TES
were assigned to the gene containing peaks in the promoter or gene body. All other peaks within the same specified region were assigned to the nearest gene, and all non-assigned peaks were classified as intergenic.

Analysis of RNA-seq data
The number of reads per gene was counted using featureCounts version 1.5.0 (Liao et al., 2014) with default settings. TPM (transcripts per million) values were calculated as described (Wagner et al., 2012). For analysis of differential gene expression of Prdm1<ihCd2/+ and wild-type pro-B and pre-B cells, the datasets were grouped according to cell type, genotype and replicate number and were analyzed using the R package DESeq2 version 1.8.2 (Love et al., 2014). Wald tests were performed with the model design formula “~ replicate + type” (type is a linear combination of cell type and genotype). Sample normalizations and dispersion estimations were conducted using the default DESeq2 settings. Regularized log transformations were computed with the blind option set to ‘FALSE’ and were transformed from log2 to log10 scale for the scatterplots shown in Fig 4A,B. Genes with an adjusted P value < 0.05 and an absolute fold change > 3 as well as a mean TPM (averaged within conditions) > 5 were called as significantly expressed. Immunoglobulin and T cell receptor genes were filtered from the list of significantly expressed genes, but were included in the TPM calculations.

Statistical analysis
Statistical analysis was performed with the GraphPad Prism 7 software. The two-tailed Student’s t-test analysis was used to assess the statistical significance of differences between two experimental groups in all experiments, with the exception of those involving NGS-based approaches and ELISA measurement. The statistical evaluation of the RNA-seq data is described above (Analysis of RNA-seq data). The ELISA data were analyzed using the Mann-Whitney test.

Data availability
RNA-seq, ChIP-seq and GRO-seq data (Table EV4), which are first reported in this study, are available at the Gene Expression Omnibus (GEO) repository under the accession numbers GSE111692. Previously published ATAC-seq, ChIP-seq and RNA-seq datasets, which were used in this study, are available at the GEO repository under the accession numbers indicated in Table EV4.
2. Appendix Figures

Appendix Figure S1

A

Human Chromosome 6

rs548234 rs6568431 rs2245214 rs573775

106,100,000 106,150,000 106,200,000 106,250,000 106,300,000

ATG5

B

Mouse

Prdm1*

rs313190

2,490 bp

1

8

3' UTR

Deletion

1

8

3' UTR (237 bp)

WT Δ

UAUUU 9 -

AUUUU 1 -

UAUUUA 1 -

UAUUUAU 3 -

ΔΔU(90)

mRNA-binding sites 96 1

C

Prdm1 rs313190

WT Δ Δ/Δ

ΔΔU(90) 399

ΔΔU(90) 218

5' Part → 3' Part

miRNA-binding site ARE PolyA site

D

Prdm1 mRNA

Pro-B Pre-B Imm B PB

WT Prdm1 rs313190

E

Cells (% of max)

Pro-B Pre-B Imm B PB

Blimp1

WT Prdm1 rs313190 ΔΔU(90)

WT plasma cells

F

Bone marrow

Spleen

Cells (x10^6)

Pro-B Pre-B Imm B Rec B PC

WT Prdm1 rs313190 ΔΔU(90)

WT FO B MZ B GC PC
Appendix Figure S1. Normal posttranscriptional control of Blimp1 expression in Prdm1\(^{Δ3'U(90)/Δ3'U(90)}\) mice.

(A) Schematic diagram of the human ATG5-PRDM1 region. The exon-intron structures of both genes are shown together with the positions of the two SNPs (rs6568431 and rs548234) that have been associated with human SLE and RA (Gateva et al., 2009; Raychaudhuri et al., 2009; Zhou et al., 2011). The hg38 genomic coordinates of human chromosome 12 are shown. (B) Schematic diagram of the Prdm1\(^{Δ3'U(90)}\) allele. A 2,253-bp sequence containing most AU-rich elements (AREs) and predicted microRNA-binding sites (http://www.mirdb.org) was deleted from the 3’ UTR (2,490 bp) of the Prdm1 gene by CRISPR/Cas9-mediated mutagenesis. The truncated 3’ UTR sequence of the Prdm1\(^{Δ3'U(90)}\) allele is shown together with the stop codon, polyadenylation (polyA) motif, residual ARE sequence and remaining microRNA-binding site (predicted to bind miR-470). The positions of the genotyping primers (1-3) are indicated. (C) PCR genotyping of DNA isolated from Prdm1\(^{Δ3'U(90)/Δ3'U(90)}\), Prdm1\(^{Δ3'U(90)/+}\) and Prdm1\(^{+/+}\) mice. The PCR fragments corresponding to the wild-type (WT) and Prdm1\(^{Δ3'U(90)}\) alleles are indicated to the left and their size (base pairs) to the right of the gel. (D) No increase of mature Prdm1 mRNA in Prdm1\(^{Δ3'U(90)/Δ3'U(90)}\) B cells. Prdm1 mRNA levels were determined by RT-qPCR analysis in ex vivo sorted pro-B, pre-B and immature B cells from the bone marrow of wild-type (WT, gray) and Prdm1\(^{Δ3'U(90)/Δ3'U(90)}\) (blue) mice. Sorted wild-type plasmablasts (PB, gray) generated by LPS stimulation for 4 days were used as a control. The value measured for the Prdm1 mRNA was normalized to the corresponding value of the Tbp mRNA coding for the ubiquitous TATA box-binding protein. The Prdm1 mRNA data are shown as mean value with SEM. The primers used for PCR amplification are shown in Table EV3. (E) Absence of Blimp1 expression in bone marrow pro-B, pre-B and immature B cells from Prdm1\(^{Δ3'U(90)/Δ3'U(90)}\) (blue line) mice. The intracellular staining profile of wild-type splenic plasma cells (black line) is shown for comparison. (F) Normal B cell development in Prdm1\(^{Δ3'U(90)/Δ3'U(90)}\) mice. Absolute cell numbers of the indicated B cell types were determined by flow cytometric analysis of bone marrow and splenic B cells from wild-type (WT, gray), and Prdm1\(^{Δ3'U(90)/Δ3'U(90)}\) (blue) mice. Bar graphs show the statistical data as mean value with SEM. Each dot corresponds to one mouse.
Appendix Figure S2. Ectopic Blimp1 expression in different lymphocyte subsets of Prdm1ihCd2/+ mice.

(A) Induction of active chromatin at the 3’ end of the Prdm1ihCd2 gene by the inserted MoMLV enhancer. ChIP analysis with H3K4me1- or H3K27ac-specific antibodies was used to determine the abundance of active chromatin (H3K4me1 and H3K27ac) at 7 different regions of the Prdm1 locus in short-term cultured wild-type (WT) and Prdm1ihCd2/+ pro-B cells. Input and precipitated DNA were quantified by qPCR with primers amplifying the indicated regions, shown below a schematic diagram of the Prdm1 gene, or the promoter of the ubiquitously expressed control Tbp gene. The amount of precipitated DNA was determined as percentage relative to input DNA for each region analyzed and is shown as relative enrichment at the Prdm1 region compared to the Tbp promoter (set as 1). Average values with SEM are shown for two independent experiments. An inactive region downstream of the Cd19 gene (Cd19ds) was analyzed as negative control. Site A corresponds to the upstream region A shown in Fig 1A. The amplicons 3 and 4 (green) could only be amplified from the MoMLV-containing Prdm1ihCd2 allele. (B) Inclusion of the Prdm1 3’ UTR sequence in the Prdm1ihCd2 transcript, as shown by the presence of RNA-seq reads throughout the last exon 8 of the Prdm1ihCd2 mRNA in Prdm1ihCd2/+ pre-B cells in contrast to the absence of reads in wild-type pre-B cells. (C,D) Flow cytometric analysis of hCD2 expression (top row) and intracellular Blimp1 staining (bottom row) in LMPPs from the bone marrow as well as in B-1a, B-1b and B-2 cells from the peritoneal cavity (C) and in all thymocyte subsets (D) of wild-type (gray) and Prdm1ihCd2/+ (red) mice. The difference in mean fluorescence intensity (ΔMFI) between the two genotypes is shown for each cell type. (E) Correlation plot of the ΔMFI values determined for hCD2 and Blimp1 expression at the indicated B cell developmental stages. (F) Flow cytometric analysis of GFP (top row) and hCD2 (bottom row) expression in bone marrow pro-B, pre-B and immature B cells as well as in splenic plasma cells of Prdm1Gfp/+ (gray) and Prdm1Gfp/ihCd2 (red) mice.
Appendix Figure S3

A

B

C

D

E

F

-14-
Appendix Figure S3. Phenotypic analysis of immune cells in Prdm1^ihCd2/+ mice.

(A) Flow cytometric analysis of B-1a, B-1b and B-2 cells from the peritoneal cavity of Prdm1^ihCd2/+ (red) and wild-type (WT, gray) mice. Bar graphs indicate absolute cell numbers for the indicated cell types. (B) Flow cytometric analysis of apoptotic pro-B and pre-B cells from the bone marrow of wild-type and Prdm1^ihCd2/+ mice, as determined by intracellular staining of cleaved Caspase 3. Dot plots (to the right) show the relative frequency of cleaved Caspase 3-positive pro-B and pre-B cells for both genotypes. (C) Flow cytometric analysis of the indicated B cell types from the bone marrow or spleen of Vav-Bcl2 Prdm1^ihCd2/+ and Vav-Bcl2 mice at the age of 2 months. Bar graphs show absolute cell numbers for each cell type and indicated genotype. (D-F) Flow cytometric analysis of splenic CD4 T and CD8 T cells (D), thymic T cell subsets (E) and bone marrow NK cells (F) from wild-type (gray), Prdm1^ihCd2/+ (red) and Prdm1^ihCd2/ihCd2 (white) mice. Bar graphs show absolute cell numbers for each cell type and indicated genotype. The different cell types were defined as described in detail in the Appendix Supplementary Methods. Statistical data (A-F) are shown as mean value with SEM and were analyzed by the Student’s t-test; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Each dot corresponds to one mouse.
Appendix Figure S4

A

Activated genes
Pro-B: 138
Pre-B: 58
Pre-plasmablasts: 184

Repressed genes
Pro-B: 68
Pre-B: 28
Pre-plasmablasts: 61

B

Information content
Base position

C

Directly activated genes
Pro-B: 8
Pre-B: 10
Pre-plasmablasts: 92

Directly repressed genes
Pro-B: 12
Pre-B: 7
Pre-plasmablasts: 101

D

Enrichment
Gene

E

Blimp1-regulated genes in pre-B cells

<table>
<thead>
<tr>
<th>Gene function</th>
<th>Activated (bound)</th>
<th>Repressed (bound)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface receptors</td>
<td>45 (4)</td>
<td>23 (8)</td>
</tr>
<tr>
<td>Signal transducers</td>
<td>51 (4)</td>
<td>18 (2)</td>
</tr>
<tr>
<td>Transcription regulators</td>
<td>24 (0)</td>
<td>10 (4)</td>
</tr>
<tr>
<td>Metabolism</td>
<td>21 (0)</td>
<td>13 (5)</td>
</tr>
<tr>
<td>Transporters</td>
<td>13 (0)</td>
<td>4 (0)</td>
</tr>
<tr>
<td>Secreted proteins</td>
<td>11 (1)</td>
<td>7 (3)</td>
</tr>
<tr>
<td>Cytoskeleton</td>
<td>11 (1)</td>
<td>7 (1)</td>
</tr>
<tr>
<td>Protein turnover</td>
<td>7 (1)</td>
<td>4 (1)</td>
</tr>
<tr>
<td>ER function</td>
<td>5 (0)</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Protein trafficking</td>
<td>3 (0)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Cell cycle</td>
<td>3 (0)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Other functions</td>
<td>44 (1)</td>
<td>13 (2)</td>
</tr>
<tr>
<td>Unknown functions</td>
<td>42 (0)</td>
<td>19 (4)</td>
</tr>
<tr>
<td>Total genes</td>
<td>280 (12)</td>
<td>125 (35)</td>
</tr>
</tbody>
</table>

F

Pre-B

Cells (% of max)

G

Surface receptors

Activated by Blimp1

Repressed by Blimp1

-16-
Appendix Figure S4. Blimp1-dependent deregulation of the B cell gene expression program. Multiple overlap of Blimp1-activated (left) or Blimp1-repressed (right) genes, which were identified in Prdm1\(^{ihCd2/+}\) pro-B and pre-B cells (as described in Fig 4A,B) as well as in wild-type pre-plasmablasts (as described in Fig 1g; Minnich et al., 2016). The number of genes in each sector of the Venn diagram is indicated. (B) Consensus Blimp1-binding motif, which was identified by de novo motif discovery in Blimp1 peaks of Prdm1\(^{ihCd2/+}\) pro-B cells with an E-values of 1.3 x 10\(^{-379}\). (C) Venn diagrams indicating the overlap of activated Blimp1-bound (left) and repressed Blimp1-bound (right) target genes, which were determined in Prdm1\(^{ihCd2/+}\) pro-B and pre-B cells (as described in Fig 4F) as well as in wild-type pre-plasmablasts (as indicated in Fig 2c; Minnich et al., 2016). (D) Blimp1 binding at the commonly repressed target genes Ccr7, Spib and Treml2. The ChIP-seq data (left) were obtained with Prdm1\(^{ihCd2/+}\) pro-B cells and Prdm1\(^{Bio/Bio}\) Rosa26\(^{Bio/BirA/BirA}\) plasmablasts (PB; Minnich et al., 2016). (E) Functional classification and quantification of the proteins that are encoded by the Blimp1-activated and Blimp1-repressed genes identified in Prdm1\(^{ihCd2/+}\) pre-B cells (Fig 4B). Numbers in brackets indicate genes with Blimp1 peaks in Prdm1\(^{ihCd2/+}\) pro-B cell. (F) Blimp1-mediated repression of Pax5 during B cell development in Prdm1\(^{ihCd2/+}\) mice. GFP (Pax5) expression was analyzed by flow cytometry of different B cell subsets from the bone marrow and spleen of Pax5\(^{iGfp/+}\) Prdm1\(^{ihCd2/+}\) mice (red), which report Pax5 (GFP) mRNA expression from an IRES-Gfp gene inserted in the 3' UTR of Pax5 (Fuxa and Busslinger, 2007). Different B cell subsets (gray) and T cells (black) of Pax5\(^{iGfp/+}\) mice were analyzed as positive or negative control for Pax5 expression. GFP expression is shown as a histogram for pre-B cells (left) or as bar graphs (right) for all B cell subsets relative to the GFP expression determined for the control Pax5\(^{iGfp/+}\) genotype (set as 1). (G) Expression of selected Blimp1-activated and Blimp1-repressed genes coding for cell surface receptors. Blimp1-bound genes are underlined. The mRNA expression of the indicated genes is shown as mean expression value (TPM) with SEM, based on two different RNA-seq experiments for the pre-B cells of each genotype.
Appendix Figure S5

A

B

C

D

E

F

G

H

I

J

Appendix Figure S5

A

B

C

D

E

F

G

H

I

J

-18-
Appendix Figure S5. Impaired GC B cell formation and increased plasmablast differentiation in Prdm1^{ihCd2/+} mice.

(A) The number of total cells in the spleen (left) and bone marrow (bone marrow) of non-immunized Prdm1^{ihCd2/+} (red) and wild-type (WT, gray) mice at the age of 2, 4 and 12 months was determined by flow cytometry. These absolute cell numbers correspond to the data shown in Fig 5A (spleen) and Fig 5B (bone marrow). (B) Presence of IgM and IgG antibodies in the serum of non-immunized Prdm1^{ihCd2/+} (red dots) and wild-type (gray dots) mice at the age of 2, 4 and 12 months. The titers (mg/ml) of total IgM and IgG antibodies were determined by ELISA and correspond to the mice analyzed in Fig 5A,B. (C) Secretion of the indicated IgG isotypes by antibody-secreting cells (ASCs) in the spleen or bone marrow (BM) of non-immunized Prdm1^{ihCd2/+} (red dots) and wild-type (gray dots) mice at the age of 7 months, as determined by ELISPOT assay. (D) Expression of the activation markers MHCI, CD40, CD80 and CD86 by splenic FO B cells of non-immunized Prdm1^{ihCd2/+} (red) and wild-type (WT, gray) mice at the age of 6 weeks, as analyzed by flow cytometry. Dot plots indicate the mean fluorescence intensity (MFI) determined for the FO B cells of both genotypes. (E) Number of total splenocytes in 2-month-old Prdm1^{ihCd2/+} (red) and wild-type (WT, gray) mice at day 14 after immunization with NP-KLH (in alum), as determined by flow cytometry. These data correspond to the immunization experiment shown in Fig 5C. (F) Somatic hypermutation (SHM) frequency of ex vivo sorted plasma cells from the spleen of 4-month-old non-immunized Prdm1^{ihCd2/+} and wild-type mice, as determined by sequencing of the region downstream of the J_H4 segment of the IgH gene. The pie-charts indicate the numbers of analyzed sequences with their corresponding mutations and overall mutation rate determined for plasma cells of each genotype (2 mice analyzed per genotype). (G) Flow cytometric analysis of GC B cells from the spleen of non-immunized Prdm1^{ihCd2/+} (red) or wild-type (gray) mice. The flow cytometry plots show the analysis of 12-month-old mice. Bar graphs show absolute numbers of GC B cells in the spleen of mice at the age of 2, 4 or 12 months. (H–J) In vitro plasmablast differentiation of FO B cells. CD43[−] FO B cells, which were MACS-sorted from the spleen of Prdm1^{ihCd2/+} (red) or wild-type (gray) mice, were stimulated for 4 days with either CpG oligodeoxynucleotides (H), LPS (I) or IL-4, IL-5 and anti-CD40 (J), and the relative abundance of CD138⁺CD22^{lo} plasmablasts (PB) was determined by flow cytometry at day 4. Statistical data (A–E, G–J) are shown as mean value with SEM and were analyzed by the Student’s t-test, *P < 0.05, **P < 0.01, ***P < 0.001,
Appendix Figure S6

Decreased B cell numbers and increased plasma cells in \(\text{EB}^{-/-} \text{Prdm1}^{\text{hCd2/}} \) mice.

(A, B) Loss of the different B cell subsets in the bone marrow (A) and spleen (B) of the T cell-deficient \(\text{EB}^{-/-} \text{Prdm1}^{\text{hCd2/}} \) (red) mice relative to the control \(\text{EB}^{-/-} \text{Prdm1}^{+/} \) (gray) mice. Bar graphs indicate absolute numbers of the different B cell types, which were analyzed by flow cytometry. (C, D) Increased plasma cell numbers in \(\text{EB}^{-/-} \text{Prdm1}^{\text{hCd2/}} \) (red) mice compared to control \(\text{EB}^{-/-} \text{Prdm1}^{+/} \) (gray) mice. Flow cytometric analysis of plasma cells from the bone marrow (C) and spleen (D) of the indicated genotypes is shown to the left, and bar graphs indicate the absolute cell numbers of plasma cells in each organ to the right. Statistical data (A-D) are shown as mean value with SEM and were analyzed by the Student’s t-test; \(*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001\). Each dot corresponds to one mouse.
Appendix Figure S7

(A) Presence of IgM antibodies detecting dsDNA, cardiolipin, SSA (Ro-52) and SSB (La) in the serum of Prdm1^{ihCd2/+} (red dots) and wild-type (gray dots) mice at the age of 2, 4 and 12 months. The titers of the different IgM antibodies were determined in the serum of male and female mice by ELISA and are displayed as arbitrary units (AU). The serum of 6-month-old Fasl^{gld/gld} mice was used as positive control. (B) Presence of IgG immune complex deposits in the glomeruli of kidneys from Prdm1^{ihCd2/+} female mice. Kidney sections of Prdm1^{ihCd2/+} and wild-type (WT) mice at the age of 12 months were stained with an anti-IgG antibody and analyzed by confocal microscopy (left). The mean fluorescence intensity (MFI) per glomerulus was determined by analyzing at least 12 individual glomeruli of each kidney (left), and the MFI values are indicated for Prdm1^{ihCd2/+} and wild-type mice in the dot plot shown to the right. Statistical data (A, B) are shown as mean value with SEM and were analyzed by the Mann-Whitney test (A) or the Student’s t-test (B); *P < 0.05, **P < 0.01. Each dot corresponds to one mouse.

Appendix Figure S7. Presence of autoantibodies and immune complex deposits in Prdm1^{ihCd2/+} mice.
Appendix Figure S8. Accelerated development of autoimmunity in Prdm1^{ihCd2/+} mice upon repeated injections of apoptotic cells.

(A) Schematic design of the apoptotic cell injection experiment. Dexamethasone-treated syngeneic thymocytes, which consisted of ~70% apoptotic cells as shown by flow cytometry, were injected intravenously (i.v.) five times at weekly intervals into 5-week-old Prdm1^{ihCd2/+} and wild-type mice, as previously published (Duhlin et al., 2016). The injected mice were analyzed 10 days later.
after the last injection. (B) Presence of IgM and IgG antibodies detecting dsDNA, cardiolipin, SSA (Ro-52) and SSB (La) in the serum of injected and non-injected mice at the age of 10 weeks. The titers of the different IgM and IgG antibodies in the serum of Prdm1^{ihCd2/+} (red dots) and wild-type (gray dots) mice were determined by ELISA and are displayed as arbitrary units (AU). The serum of 6-month-old Fas^{gld/gld} mice was used as positive control. Statistical data are shown as mean value with SEM and were analyzed by the Mann-Whitney test; *<i>P</i> < 0.05. Each dot corresponds to one mouse. (C) Detection of anti-nuclear antibodies (ANA) of the IgM and IgG isotype in the serum of injected and non-injected Prdm1^{ihCd2/+} or wild-type mice. ANA staining was performed with the serum of the indicated mice by indirect immunofluorescence assay on HEp-2 cells with an Alexa488-conjugated anti-mouse IgM or IgG antibody, respectively. The serum of Fas^{gld/gld} mice was used as positive control.
3. Appendix Supplementary References

