Weiss-Kruszka syndrome and the failure to establish neuronal identity

Weiss-Kruszka syndrome is a rare neurodevelopmental disorder characterized by craniofacial anomalies, developmental delay, and autistic features. Researchers at the Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences and the Keck School of Medicine of the University of Southern California (USC) in Los Angeles uncovered the molecular mechanism underlying Weiss-Kruszka syndrome: The causative mutation in the gene ZNF462 leads to a failure to safeguard the neural lineage specification during early embryonic development. The study, conducted in disease-modeled murine cells, was published on January 5th in Nature Cell Biology.

Neuronal specification is compromised in Zfp462 deleted cells. Immunofluorescence images of wildtype (WT) and Zfp462 deleted (Zfp462 KO) cells during neural differentiation. The neuronal lineage marker SOX1 is shown in green and the endodermal lineage marker FOXA2 is in magenta. Non-neural cells are detected during the neural differentiation of Zfp462 KO cells. © Bell Lab / NCB /IMBA.